dc.creatorNeto, ESH
dc.creatorDe Pierro, AR
dc.date2009
dc.date2014-07-30T14:33:14Z
dc.date2015-11-26T16:32:32Z
dc.date2014-07-30T14:33:14Z
dc.date2015-11-26T16:32:32Z
dc.date.accessioned2018-03-28T23:13:59Z
dc.date.available2018-03-28T23:13:59Z
dc.identifierSiam Journal On Optimization. Siam Publications, v. 20, n. 3, n. 1547, n. 1572, 2009.
dc.identifier1052-6234
dc.identifierWOS:000277836500021
dc.identifier10.1137/070711712
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60051
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/60051
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1270548
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe present a unifying framework for nonsmooth convex minimization bringing together is an element of-subgradient algorithms and methods for the convex feasibility problem. This development is a natural step for is an element of-subgradient methods in the direction of constrained optimization since the Euclidean projection frequently required in such methods is replaced by an approximate projection, which is often easier to compute. The developments are applied to incremental subgradient methods, resulting in new algorithms suitable to large-scale optimization problems, such as those arising in tomographic imaging.
dc.description20
dc.description3
dc.description1547
dc.description1572
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCNPq [476825/2004-0, 304820/2006-7]
dc.descriptionFAPESP [2002/07153-2]
dc.languageen
dc.publisherSiam Publications
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationSiam Journal On Optimization
dc.relationSIAM J. Optim.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectconvex optimization
dc.subjectprojection methods
dc.subjectsubgradient methods
dc.subjectincremental subgradient
dc.subjectNonexpansive-mappings
dc.subjectFeasibility Problems
dc.subjectEmission Tomography
dc.subjectImage-reconstruction
dc.subjectGradient Methods
dc.subjectOrdered Subsets
dc.subjectAlgorithms
dc.subjectConvergence
dc.subjectApproximation
dc.subjectMinimization
dc.titleINCREMENTAL SUBGRADIENTS FOR CONSTRAINED CONVEX OPTIMIZATION: A UNIFIED FRAMEWORK AND NEW METHODS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución