dc.creator | MARTINEZ, JM | |
dc.date | 1993 | |
dc.date | APR | |
dc.date | 2014-07-30T13:43:06Z | |
dc.date | 2015-11-26T16:32:27Z | |
dc.date | 2014-07-30T13:43:06Z | |
dc.date | 2015-11-26T16:32:27Z | |
dc.date.accessioned | 2018-03-28T23:13:52Z | |
dc.date.available | 2018-03-28T23:13:52Z | |
dc.identifier | Mathematics Of Computation. Amer Mathematical Soc, v. 60, n. 202, n. 681, n. 698, 1993. | |
dc.identifier | 0025-5718 | |
dc.identifier | WOS:A1993LE40600013 | |
dc.identifier | 10.2307/2153109 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53909 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/53909 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1270520 | |
dc.description | In this paper we analyze the use of structured quasi-Newton formulae as preconditioners of iterative linear methods when the inexact-Newton approach is employed for solving nonlinear systems of equations. We prove that superlinear convergence and bounded work per iteration is obtained if the preconditioners satisfy a Dennis-More condition. We develop a theory of Least-Change Secant Update preconditioners and we present an application concerning a structured BFGS preconditioner. | |
dc.description | 60 | |
dc.description | 202 | |
dc.description | 681 | |
dc.description | 698 | |
dc.language | en | |
dc.publisher | Amer Mathematical Soc | |
dc.publisher | Providence | |
dc.relation | Mathematics Of Computation | |
dc.relation | Math. Comput. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | NONLINEAR SYSTEMS | |
dc.subject | INEXACT-NEWTON METHODS | |
dc.subject | QUASI-NEWTON METHODS | |
dc.subject | PRECONDITIONERS | |
dc.subject | Quasi-newton Methods | |
dc.subject | Sparse Nonlinear-systems | |
dc.subject | Iterative Methods | |
dc.subject | Matrix Factorizations | |
dc.subject | Conjugate-gradient | |
dc.subject | Linear Equations | |
dc.subject | Convergence | |
dc.subject | Algorithm | |
dc.title | A THEORY OF SECANT PRECONDITIONERS | |
dc.type | Artículos de revistas | |