dc.creatorMARTINEZ, JM
dc.date1993
dc.dateAPR
dc.date2014-07-30T13:43:06Z
dc.date2015-11-26T16:32:27Z
dc.date2014-07-30T13:43:06Z
dc.date2015-11-26T16:32:27Z
dc.date.accessioned2018-03-28T23:13:52Z
dc.date.available2018-03-28T23:13:52Z
dc.identifierMathematics Of Computation. Amer Mathematical Soc, v. 60, n. 202, n. 681, n. 698, 1993.
dc.identifier0025-5718
dc.identifierWOS:A1993LE40600013
dc.identifier10.2307/2153109
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53909
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53909
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1270520
dc.descriptionIn this paper we analyze the use of structured quasi-Newton formulae as preconditioners of iterative linear methods when the inexact-Newton approach is employed for solving nonlinear systems of equations. We prove that superlinear convergence and bounded work per iteration is obtained if the preconditioners satisfy a Dennis-More condition. We develop a theory of Least-Change Secant Update preconditioners and we present an application concerning a structured BFGS preconditioner.
dc.description60
dc.description202
dc.description681
dc.description698
dc.languageen
dc.publisherAmer Mathematical Soc
dc.publisherProvidence
dc.relationMathematics Of Computation
dc.relationMath. Comput.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectNONLINEAR SYSTEMS
dc.subjectINEXACT-NEWTON METHODS
dc.subjectQUASI-NEWTON METHODS
dc.subjectPRECONDITIONERS
dc.subjectQuasi-newton Methods
dc.subjectSparse Nonlinear-systems
dc.subjectIterative Methods
dc.subjectMatrix Factorizations
dc.subjectConjugate-gradient
dc.subjectLinear Equations
dc.subjectConvergence
dc.subjectAlgorithm
dc.titleA THEORY OF SECANT PRECONDITIONERS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución