dc.creatorColonius, F
dc.creatorKizil, E
dc.creatorSan Martin, LAB
dc.date2005
dc.dateSEP 15
dc.date2014-11-16T00:13:27Z
dc.date2015-11-26T16:31:04Z
dc.date2014-11-16T00:13:27Z
dc.date2015-11-26T16:31:04Z
dc.date.accessioned2018-03-28T23:12:07Z
dc.date.available2018-03-28T23:12:07Z
dc.identifierJournal Of Differential Equations. Academic Press Inc Elsevier Science, v. 216, n. 2, n. 324, n. 353, 2005.
dc.identifier0022-0396
dc.identifierWOS:000232086900003
dc.identifier10.1016/j.jde.2005.020.21
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57341
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/57341
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57341
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1270120
dc.descriptionThis paper considers monotonic (or causal) homotopy between trajectories of control systems. The main result is the construction of an analogue of the simply connected covering space. The constructed covering Gamma (Sigma, x) has the structure of a manifold and satisfies the property that two trajectories are monotonic homotopic if and only if the end points of their liftings coincide. (c) 2005 Elsevier Inc. All rights reserved.
dc.description216
dc.description2
dc.description324
dc.description353
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Differential Equations
dc.relationJ. Differ. Equ.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectcontrol systems
dc.subjecthomotopy of trajectories
dc.subjectcovering spaces
dc.subjectSemisimple Lie-groups
dc.subjectSemigroups
dc.titleCovering space for monotonic homotopy of trajectories of control systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución