dc.creatorLinares, F
dc.creatorPastor, A
dc.date2011
dc.dateFEB 28
dc.date2014-07-30T13:38:40Z
dc.date2015-11-26T16:29:30Z
dc.date2014-07-30T13:38:40Z
dc.date2015-11-26T16:29:30Z
dc.date.accessioned2018-03-28T23:10:32Z
dc.date.available2018-03-28T23:10:32Z
dc.identifierJournal Of Functional Analysis. Academic Press Inc Elsevier Science, v. 260, n. 4, n. 1060, n. 1085, 2011.
dc.identifier0022-1236
dc.identifierWOS:000286447500006
dc.identifier10.1016/j.jfa.2010.11.005
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52501
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/52501
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1269738
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis paper addresses well-posedness issues for the initial value problem (IVP) associated with the generalized Zakharov-Kuznetsov equation, namely, {ut + partial derivative(x)Delta u+ u(k)u(x) = 0, (x, y) is an element of R(2), t > 0, u(x, y, 0) = u(0)(x, y). For 2 <= k <= 7, the IVP above is shown to be locally well posed for data in H(s) (R(2)), s > 3/4. For k >= 8, local well-posedness is shown to hold for data in H(s) (R(2)), s > s(k), where s(k) = 1 - 3/(2k - 4). Furthermore, for k >= 3, if u(0) is an element of H(1) (R(2)) and satisfies parallel to u(0)parallel to(H1) << 1, then the solution is shown to be global in H(1)(R(2)). For k = 2, if u(0) is an element of H(s)(R(2)), s > 53/63, and satisfies parallel to u(0)parallel to(L2) < root 3 parallel to phi parallel to(L2), where phi is the corresponding ground state solution, then the solution is shown to be global in H(s)(R(2)). (C) 2010 Elsevier Inc. All rights reserved.
dc.description260
dc.description4
dc.description1060
dc.description1085
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [152234/2007-1]
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Functional Analysis
dc.relationJ. Funct. Anal.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectZakharov-Kuznetsov equation
dc.subjectLocal well-posedness
dc.subjectGlobal well-posedness
dc.subjectSchrodinger-equations
dc.subjectKorteweg-devries
dc.subjectCauchy-problem
dc.subjectIll-posedness
dc.subjectKdv Equation
dc.subjectExistence
dc.titleLocal and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución