dc.creator | Linares, F | |
dc.creator | Pastor, A | |
dc.date | 2011 | |
dc.date | FEB 28 | |
dc.date | 2014-07-30T13:38:40Z | |
dc.date | 2015-11-26T16:29:30Z | |
dc.date | 2014-07-30T13:38:40Z | |
dc.date | 2015-11-26T16:29:30Z | |
dc.date.accessioned | 2018-03-28T23:10:32Z | |
dc.date.available | 2018-03-28T23:10:32Z | |
dc.identifier | Journal Of Functional Analysis. Academic Press Inc Elsevier Science, v. 260, n. 4, n. 1060, n. 1085, 2011. | |
dc.identifier | 0022-1236 | |
dc.identifier | WOS:000286447500006 | |
dc.identifier | 10.1016/j.jfa.2010.11.005 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52501 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/52501 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1269738 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | This paper addresses well-posedness issues for the initial value problem (IVP) associated with the generalized Zakharov-Kuznetsov equation, namely, {ut + partial derivative(x)Delta u+ u(k)u(x) = 0, (x, y) is an element of R(2), t > 0, u(x, y, 0) = u(0)(x, y). For 2 <= k <= 7, the IVP above is shown to be locally well posed for data in H(s) (R(2)), s > 3/4. For k >= 8, local well-posedness is shown to hold for data in H(s) (R(2)), s > s(k), where s(k) = 1 - 3/(2k - 4). Furthermore, for k >= 3, if u(0) is an element of H(1) (R(2)) and satisfies parallel to u(0)parallel to(H1) << 1, then the solution is shown to be global in H(1)(R(2)). For k = 2, if u(0) is an element of H(s)(R(2)), s > 53/63, and satisfies parallel to u(0)parallel to(L2) < root 3 parallel to phi parallel to(L2), where phi is the corresponding ground state solution, then the solution is shown to be global in H(s)(R(2)). (C) 2010 Elsevier Inc. All rights reserved. | |
dc.description | 260 | |
dc.description | 4 | |
dc.description | 1060 | |
dc.description | 1085 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | CNPq [152234/2007-1] | |
dc.language | en | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.publisher | San Diego | |
dc.publisher | EUA | |
dc.relation | Journal Of Functional Analysis | |
dc.relation | J. Funct. Anal. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Zakharov-Kuznetsov equation | |
dc.subject | Local well-posedness | |
dc.subject | Global well-posedness | |
dc.subject | Schrodinger-equations | |
dc.subject | Korteweg-devries | |
dc.subject | Cauchy-problem | |
dc.subject | Ill-posedness | |
dc.subject | Kdv Equation | |
dc.subject | Existence | |
dc.title | Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation | |
dc.type | Artículos de revistas | |