dc.creatorBroitman, E
dc.creatorBojorge, C
dc.creatorElhordoy, F
dc.creatorKent, VR
dc.creatorGadioli, GZ
dc.creatorMarotti, RE
dc.creatorCanepa, HR
dc.creatorDalchiele, EA
dc.date2012
dc.dateDEC
dc.date2014-07-30T14:00:04Z
dc.date2015-11-26T16:28:51Z
dc.date2014-07-30T14:00:04Z
dc.date2015-11-26T16:28:51Z
dc.date.accessioned2018-03-28T23:09:54Z
dc.date.available2018-03-28T23:09:54Z
dc.identifierSurface & Coatings Technology. Elsevier Science Sa, v. 213, n. 59, n. 64, 2012.
dc.identifier0257-8972
dc.identifierWOS:000314081200009
dc.identifier10.1016/j.surfcoat.2012.10.015
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/56176
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/56176
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1269576
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe microstructural, morphological, optical and water-adsorption properties of nanocrystalline ZnO thin films and ZnO nanowires were studied and compared. The ZnO thin films were obtained by a sol-gel process, while the ZnO nanowires were electrochemically grown onto a ZnO sol-gel spin-coated seed layer. Thin films and nanowire samples were deposited onto crystalline quartz substrates covered by an Au electrode, able to be used in a quartz crystal microbalance. X-ray diffraction measurements reveal in both cases a typical diffraction pattern of ZnO wurtzite structure. Scanning electron microscopic images of nanowire samples show the presence of nanowires with hexagonal sections, with diameters ranging from 30 to 90 nm. Optical characterization reveals a bandgap energy of 3.29 eV for the nanowires and 3.35 eV for the thin films. A quartz crystal microbalance placed in a vacuum chamber was used to quantify the amount and kinetics of water adsorption onto the samples. Nanowire samples, which have higher surface areas than the thin films, adsorb significantly more water. (C) 2012 Elsevier B.V. All rights reserved.
dc.description213
dc.description59
dc.description64
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCLAF
dc.descriptionSwedish Government Strategic Research Area Grant in Materials Science
dc.descriptionCITEDEF
dc.descriptionCONICET
dc.descriptionPEDECIBA-Fisica
dc.descriptionANII (Agencia Nacional de Investigacion e Innovacion)
dc.descriptionUniversidad de la Republica, in Montevideo, Uruguay
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [490580/2008-4]
dc.languageen
dc.publisherElsevier Science Sa
dc.publisherLausanne
dc.publisherSuíça
dc.relationSurface & Coatings Technology
dc.relationSurf. Coat. Technol.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectZnO
dc.subjectZnO nanowires
dc.subjectNanocrystalline ZnO
dc.subjectSol gel
dc.subjectWater adsorption
dc.subjectWater-adsorption
dc.subjectHumidity Sensor
dc.subjectElectrodeposition
dc.subjectNanostructures
dc.subjectDevices
dc.titleComparative study on the properties of ZnO nanowires and nanocrystalline thin films
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución