dc.creatorRamos, JG
dc.creatorVasconcellos, AR
dc.creatorLuzzi, R
dc.date2000
dc.dateSEP 1
dc.date2014-12-02T16:28:15Z
dc.date2015-11-26T16:28:02Z
dc.date2014-12-02T16:28:15Z
dc.date2015-11-26T16:28:02Z
dc.date.accessioned2018-03-28T23:09:00Z
dc.date.available2018-03-28T23:09:00Z
dc.identifierPhysica A. Elsevier Science Bv, v. 284, n. 41730, n. 140, n. 160, 2000.
dc.identifier0378-4371
dc.identifierWOS:000088897300014
dc.identifier10.1016/S0378-4371(00)00173-4
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79517
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/79517
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79517
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1269351
dc.descriptionWithin the framework of the nonequilibrium statistical ensemble formalism provided by the nonequilibrium statistical operator method, we derive a quantum Boltzmann-style transport theory of a broad scope. This is done by choosing the single- and two-particle dynamical density operators as the basic informational-statistical variables. The equations of evolution for their average values over the nonequilibrium ensemble, the nonequilibrium-reduced Dirac-Landau-Bogoliubov-type density matrices, are obtained. From the resulting generalized nonlinear quantum transport theory, after resorting to perturbative-like expansions, a far-reaching generalization of Boltzmann equation for the single-particle distribution function is derived. A type of traditional Boltzmann equation follows after using stringent approximations, whose limits of validity are evaluated. (C) 2000 Elsevier Science B.V. All rights reserved.
dc.description284
dc.description41730
dc.description140
dc.description160
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationPhysica A
dc.relationPhysica A
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectStatistical Thermodynamic Approach
dc.subjectIrreversible Thermodynamics
dc.subjectSemiconductor Physics
dc.subjectDissipative Processes
dc.subjectEquations
dc.subjectEvolution
dc.subjectOperator
dc.subjectExample
dc.titleDerivation in a nonequilibrium ensemble formalism of a for-reaching generalization of a quantum Boltzmann theory
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución