dc.creatorde Oliveira, PR
dc.creatorRittner, R
dc.date2008
dc.dateMAR
dc.date2014-07-30T14:00:41Z
dc.date2015-11-26T16:27:28Z
dc.date2014-07-30T14:00:41Z
dc.date2015-11-26T16:27:28Z
dc.date.accessioned2018-03-28T23:08:25Z
dc.date.available2018-03-28T23:08:25Z
dc.identifierMagnetic Resonance In Chemistry. John Wiley & Sons Ltd, v. 46, n. 3, n. 250, n. 255, 2008.
dc.identifier0749-1581
dc.identifierWOS:000253842200008
dc.identifier10.1002/mrc.2173
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/56532
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/56532
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1269200
dc.descriptionThe integration of I H and C-13 NMR spectra, at -90 degrees C in CS2/CD2Cl2 (9: 1), for the trans-3-chlorocyclohexanol (1), trans-3-bromocyclohexanol (2), and trans-3-methoxycyclohexanol (4) showed that the equatorial-axial (ea) conformer occurs as ca 63, 63, and 69% in the conformational equilibrium, respectively. This corresponds to the following Delta G(ea-ae) values (from H-1 spectrum): -0.32 +/- 0.01, -0.32 +/- 0.04, -0.48 +/- 0.05 kcal mol(-1); and to (from 13C spectrum): -0.31 +/- 0.04, -0.35 +/- 0.05, and -0.44 +/- 0.01 kcal mol(-1), respectively, in very good agreement within both series. Thus, although bromine is bulkier than chlorine, the 1,3-diaxial steric effects are similar in these equilibria. However, the integration of I H NMR spectrum for the trans-3-methylcyclohexanol (3) gave 90% of the 3ae conformer in the equilibrium, at -90 degrees C on CS2/CD2Cl2 (9: 1), corresponding to a Delta G(ea-ae) value of 1.31 +/- 0.02 kcal mol(-1). The values obtained through the additivity rule, with data from monosubstituted cyclohexanes (Delta G(Ad) = Delta G(x) + Delta G(OH)), for compounds 1, 2, and 4 (-0.37 +/- 0.15, -0.34 +/- 0.09, and -0.46 +/- 0.04 kcal mol(-1), respectively) are in very good agreement with the experimental values, but it is significantly smaller for compound 3 (0.79 0.02 kcal mol-1). Theoretical calculations through different levels of theory (HF/6-311+g**, B3LYP/6-311+g**, MP2/6-31+g**, and CBS-4M) showed that CBS-4M is the best method for the study of conformational equilibria for these systems, since it provides Delta G(ea-ae) values similar to the experimental values. Copyright (c) 2008 John Wiley & Sons, Ltd.
dc.description46
dc.description3
dc.description250
dc.description255
dc.languageen
dc.publisherJohn Wiley & Sons Ltd
dc.publisherChichester
dc.publisherInglaterra
dc.relationMagnetic Resonance In Chemistry
dc.relationMagn. Reson. Chem.
dc.rightsfechado
dc.rightshttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.sourceWeb of Science
dc.subjectNMR
dc.subjectH-1 C-13 NMR
dc.subjectconformational analysis
dc.subjecttheoretical calculations
dc.subjectlow temperature
dc.subjectSet Model Chemistry
dc.subjectMonosubstituted Cyclohexanes
dc.subjectDensity
dc.subjectEnergies
dc.subjectExchange
dc.titleConformational equilibria of trans-3-X-cyclohexanols (X = Cl, Br, CH3 and OCH3. A low temperature NMR study and theoretical calculations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución