dc.creatorda Rocha, R
dc.creatorVaz, J
dc.date2006
dc.date42186
dc.date2014-11-16T17:19:20Z
dc.date2015-11-26T16:24:16Z
dc.date2014-11-16T17:19:20Z
dc.date2015-11-26T16:24:16Z
dc.date.accessioned2018-03-28T23:05:14Z
dc.date.available2018-03-28T23:05:14Z
dc.identifierJournal Of Algebra. Academic Press Inc Elsevier Science, v. 301, n. 2, n. 459, n. 473, 2006.
dc.identifier0021-8693
dc.identifierWOS:000238549200002
dc.identifier10.1016/j.jalgebra.2006.04.004
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/56001
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/56001
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/56001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1268399
dc.descriptionIntroducing products between multivectors of Cl-0,Cl-7 (the Clifford algebra over the metric vector space R-0,R-7) and octonions, resulting in an octonion, and leading to the non-associative standard octonionic product in a particular case, we generalize the octonionic X-product, associated with the transformation rules for bosonic and fermionic fields on the tangent bundle over the 7-sphere S-7, and the XY-product. This generalization is accomplished in the u- and (u, v)-products, where u, v is an element of Cl-0,Cl-7 are fixed, but arbitrary. Moreover, we extend these original products in order to encompass the most general-non-associative-products (R circle plus R-0,R-7) x Cl-0,Cl-7 -> R circle plus R-0,R-7, Cl-0,Cl-7 x (R circle plus R-0,R-7) -> R circle plus R-0,R-7 and Cl-0,Cl-7 x Cl-0,Cl-7 -> R circle plus R-0,R-7. We also present the formalism necessary to construct Clifford algebra-parametrized octonions, which provides the structure to present the O-1,O-u algebra. Finally we introduce a method to construct O-algebras endowed with the (u, v)-product from O-algebras endowed with the u-product. These algebras are called O-like algebras and their octonionic units are parametrized by arbitrary Clifford multivectors. When u is restricted to the underlying paravector space R circle plus R-0,R-7 -> Cl-0,Cl-7 of the octonion algebra O, these algebras are shown to be isomorphic. The products between Clifford multivectors and octonions, leading to an octonion, are shown to share graded-associative, supersymmetric properties. We also investigate the generalization of Moufang identities, for each one of the products introduced. (c) 2006 Published by Elsevier Inc.
dc.description301
dc.description2
dc.description459
dc.description473
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Algebra
dc.relationJ. Algebra
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectClifford algebras
dc.subjectoctonions
dc.subjectgraded-associative algebras
dc.subjectDivision-algebras
dc.subjectRepresentations
dc.titleClifford algebra-parametrized octonions and generalizations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución