dc.creatorGomes, SM
dc.creatorKushpel, AK
dc.creatorLevesley, J
dc.date2001
dc.date2014-11-16T12:50:16Z
dc.date2015-11-26T16:22:48Z
dc.date2014-11-16T12:50:16Z
dc.date2015-11-26T16:22:48Z
dc.date.accessioned2018-03-28T23:04:16Z
dc.date.available2018-03-28T23:04:16Z
dc.identifierJournal Of Fourier Analysis And Applications. Birkhauser Boston Inc, v. 7, n. 3, n. 283, n. 295, 2001.
dc.identifier1069-5869
dc.identifierWOS:000169339100003
dc.identifier10.1007/BF02511814
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54828
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/54828
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54828
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1268157
dc.descriptionIn this article we consider a simple method of radial quasi-interpolation by polynomials on the unit sphere in R-3, and present rates of convergence for this method in Sobolev spaces of square integrable functions. We write the discrete Fourier series as a quasi-interpolant and hence obtain convergence rates, in the aforementioned Sobolev spaces, for the discrete Fourier projection. we also discuss some typical practical examples used in the context of spherical wavelets.
dc.description7
dc.description3
dc.description283
dc.description295
dc.languageen
dc.publisherBirkhauser Boston Inc
dc.publisherCambridge
dc.publisherEUA
dc.relationJournal Of Fourier Analysis And Applications
dc.relationJ. Fourier Anal. Appl.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectquasi-interpolation
dc.subjectSobolev spaces
dc.subjectapproximation
dc.titleApproximation in L-2 Sobolev spaces on the 2-sphere by quasi-interpolation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución