dc.creator | Gomes, SM | |
dc.creator | Kushpel, AK | |
dc.creator | Levesley, J | |
dc.date | 2001 | |
dc.date | 2014-11-16T12:50:16Z | |
dc.date | 2015-11-26T16:22:48Z | |
dc.date | 2014-11-16T12:50:16Z | |
dc.date | 2015-11-26T16:22:48Z | |
dc.date.accessioned | 2018-03-28T23:04:16Z | |
dc.date.available | 2018-03-28T23:04:16Z | |
dc.identifier | Journal Of Fourier Analysis And Applications. Birkhauser Boston Inc, v. 7, n. 3, n. 283, n. 295, 2001. | |
dc.identifier | 1069-5869 | |
dc.identifier | WOS:000169339100003 | |
dc.identifier | 10.1007/BF02511814 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54828 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/54828 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/54828 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1268157 | |
dc.description | In this article we consider a simple method of radial quasi-interpolation by polynomials on the unit sphere in R-3, and present rates of convergence for this method in Sobolev spaces of square integrable functions. We write the discrete Fourier series as a quasi-interpolant and hence obtain convergence rates, in the aforementioned Sobolev spaces, for the discrete Fourier projection. we also discuss some typical practical examples used in the context of spherical wavelets. | |
dc.description | 7 | |
dc.description | 3 | |
dc.description | 283 | |
dc.description | 295 | |
dc.language | en | |
dc.publisher | Birkhauser Boston Inc | |
dc.publisher | Cambridge | |
dc.publisher | EUA | |
dc.relation | Journal Of Fourier Analysis And Applications | |
dc.relation | J. Fourier Anal. Appl. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | quasi-interpolation | |
dc.subject | Sobolev spaces | |
dc.subject | approximation | |
dc.title | Approximation in L-2 Sobolev spaces on the 2-sphere by quasi-interpolation | |
dc.type | Artículos de revistas | |