dc.creatorGuedes, S
dc.creatorHadler, JC
dc.creatorOliveira, KMG
dc.creatorMoreira, PAFP
dc.creatorIunes, PJ
dc.creatorTello, SCA
dc.date2006
dc.dateAPR
dc.date2014-11-16T08:34:16Z
dc.date2015-11-26T16:21:15Z
dc.date2014-11-16T08:34:16Z
dc.date2015-11-26T16:21:15Z
dc.date.accessioned2018-03-28T23:03:19Z
dc.date.available2018-03-28T23:03:19Z
dc.identifierRadiation Measurements. Pergamon-elsevier Science Ltd, v. 41, n. 4, n. 392, n. 398, 2006.
dc.identifier1350-4487
dc.identifierWOS:000236310000002
dc.identifier10.1016/j.radmeas.2005.06.040
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60975
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/60975
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/60975
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1267925
dc.descriptionFission tracks are formed in apatite and other minerals after the passage of fission fragments, which deliver locally intense amounts of energy to the crystal lattice. It is well known that the observable mean track lengths are reduced due to thermal treatment. If the annealing kinetics are known, it is sometimes possible to infer the thermal history a given sample experienced. Given the present lack of appropriate information on track formation, annealing and etching, researchers have used empirical models fitted to laboratory data on annealing to describe the annealing kinetics. In this work, a kinetic model is presented to describe the annealing process. It is based upon some experimental evidence. Instead of furnishing a complete and detailed description, it is intended to relate the observable quantities, namely, etched confined fission tracks, time and temperature based on simple hypotheses using a simplified view of the track. A kinetic model equation for the reduced mean track length, L/L-0, as a function of temperature, T, and heating duration, t, which fits quite well the available literature, has been derived and is given by (L/L-0) =exp{-n exp[-w'(U-0 - A(1) In(t) + A(2) In-2 (t) - k(B)T)(1/2)]} in which n is a parameter related to etching and track geometry, w' and U-0 are the width and the energy of a newly hypothesized potential barrier, respectively. A(1) and A(2) account for the dependence of the energy barrier on the duration of heating. Correlations with cell parameters of compositionally different apatites show that the barrier energy is the principal model descriptor for annealing. (c) 2005 Elsevier Ltd. All rights reserved.
dc.description41
dc.description4
dc.description392
dc.description398
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationRadiation Measurements
dc.relationRadiat. Meas.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectapatite
dc.subjectfission track
dc.subjectannealing
dc.subjectpotential barrier
dc.subjectmodel
dc.subjectAge Reduction
dc.subjectFluorapatite
dc.subjectMechanisms
dc.subjectTemperature
dc.subjectVariability
dc.subjectTime
dc.titleKinetic model for the annealing of fission tracks in minerals and its application to apatite
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución