dc.creatorTakahata, Y
dc.creatorMarques, AD
dc.creatorCustodio, R
dc.date2010
dc.date42309
dc.date2014-11-16T04:19:32Z
dc.date2015-11-26T16:19:32Z
dc.date2014-11-16T04:19:32Z
dc.date2015-11-26T16:19:32Z
dc.date.accessioned2018-03-28T23:02:28Z
dc.date.available2018-03-28T23:02:28Z
dc.identifierJournal Of Molecular Structure-theochem. Elsevier Science Bv, v. 959, n. 41699, n. 106, n. 112, 2010.
dc.identifier0166-1280
dc.identifierWOS:000283960600017
dc.identifier10.1016/j.theochem.2010.08.014
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54083
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/54083
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54083
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1267713
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionApproaches, using density functional theory (DFT), to calculate accurate adiabatic and vertical carbon is core electron binding energies (CEBE) of some alkanes, alkenes, alkynes and methyl- and fluorine-substituted benzenes are investigated. The approaches tested can be schematized as follows; Delta E-KS(PW86 x -PW91c/TZP + C-rel)//DFT(PW86 x -PW91c/TZP) where Delta E-KS is the difference between the Kohn-Sham total energy of the core-hole cation M+, E-KS(M+), and the Kohn-Sham total energy of the neutral ground state molecule M, E-KS(M). The geometry of M is optimized with DFT(PW86x-PW91c/TZP). For the adiabatic C1s CEBE calculation, the geometry of M+ is optimized whereas, for the vertical C1s CEBE calculation, the geometry of M+ is identical to the neutral ground state molecule M. C-rel represents relativistic corrections. We tested two cases; C-rel = 0 eV, and C-rel = 0.05 eV. The relativistic correction turned out to be not necessary, because inclusion of the relativistic correction always increased deviation. The current results suggest a systematic error in the calculations that is fortuitously offset by the neglect of relativistic effects. The best approach resulted in average absolute deviations (maximum absolute deviations) from adiabatic experimental values of 0.045 eV (0.130 eV) for calculations of the corresponding C1s CEBE of the alkanes, alkenes, and substituted benzenes for 120 cases. The absolute uncertainty in the experimental measurements is estimated to be 0.03 eV. The average absolute deviation of 0.045 eV is close to the magnitude of the experimental uncertainty. Agreement between theory and experiment is better for adiabatic C1s CEBE than for vertical C1s CEBE. (C) 2010 Elsevier B.V. All rights reserved.
dc.description959
dc.description41699
dc.description106
dc.description112
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationJournal Of Molecular Structure-theochem
dc.relationTheochem-J. Mol. Struct.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectC1s CEBE
dc.subjectDFT
dc.subjectCarbon hydrates
dc.subjectSubstituted benzenes
dc.subject1s Photoelectron-spectroscopy
dc.subjectIonization Energies
dc.subjectProton Affinities
dc.titleAccurate calculation of C1s core electron binding energies of some carbon hydrates and substituted benzenes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución