dc.creatorMuniz, M
dc.creatorCosta, SIR
dc.date2003
dc.date38718
dc.date2014-11-16T03:52:16Z
dc.date2015-11-26T16:19:23Z
dc.date2014-11-16T03:52:16Z
dc.date2015-11-26T16:19:23Z
dc.date.accessioned2018-03-28T23:02:24Z
dc.date.available2018-03-28T23:02:24Z
dc.identifierDiscrete Mathematics. Elsevier Science Bv, v. 260, n. 41699, n. 119, n. 136, 2003.
dc.identifier0012-365X
dc.identifierWOS:000180370600010
dc.identifier10.1016/S0012-365X(02)00454-5
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/61048
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/61048
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/61048
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1267692
dc.descriptionThe labeling of the Hamming Space (Z(2)(2),d(h)) by the rotation group Z(4) and its coordinate-wise extension to Z(2)(2n) give rise to the concept of Z(4)-linearity. Attempts to extend this concept have been done in different ways. We deal with a natural extension question: Is there any pattern of a cyclic group G labeling of Z(m)(n), with the Hamming or Lee metric? The answer is no. Actually, we show here that Lee spaces do not allow even labelings by abelian groups, what lead us to construct labelings by semi-direct products of abelian groups. Labelings of general Hamming spaces and of Reed-Muller codes RM(1,m) are characterized here in the context of isometry groups. (C) 2002 Elsevier Science B.V. All rights reserved.
dc.description260
dc.description41699
dc.description119
dc.description136
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationDiscrete Mathematics
dc.relationDiscret. Math.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectLee spaces
dc.subjectZ(4)-linearity
dc.subjectReed-Muller codes
dc.subjectlabelings
dc.subjectgraphs
dc.subjectCodes
dc.subjectIsometries
dc.titleLabelings of Lee and Hamming Spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución