Artículos de revistas
Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres
Registro en:
Water Research. Pergamon-elsevier Science Ltd, v. 40, n. 8, n. 1726, n. 1734, 2006.
0043-1354
WOS:000237853400026
10.1016/j.watres.2006.02.027
Autor
Vieira, RS
Beppu, MM
Institución
Resumen
The adsorption and desorption of Hg(II) ions was studied using static and dynamic methods, employing membranes and spheres of chitosan as the adsorbent. The quantity of adsorption was influenced by chitosan crosslinking and by the adsorbent shape. The Langmuir model was applied to fit the experimental equilibrium data. Glutaraldehyde-crosslinked membranes presented a lower desorption capacity, when compared to natural membranes, but could be regenerated for use in successive cycles. Dynamic adsorption experiments suggested that the adsorption capacity depended mainly on adsorbent geometry, due to differences between surface area to mass ratio and initial concentration of Hg(II) ions. The adsorption capacity determined by the dynamic method was 65% and 77% for membranes and spheres, respectively of the value obtained static method results. A process combining dynamic adsorption and static desorption can be used to concentrate the Hg(11) ions by a factor of nearly seven (7 x), when compared to the initially treated volume. 40 8 1726 1734