dc.creatorSussner, P
dc.date2000
dc.dateMAR
dc.date2014-12-02T16:24:52Z
dc.date2015-11-26T16:11:15Z
dc.date2014-12-02T16:24:52Z
dc.date2015-11-26T16:11:15Z
dc.date.accessioned2018-03-28T22:59:44Z
dc.date.available2018-03-28T22:59:44Z
dc.identifierNeurocomputing. Elsevier Science Bv, v. 31, n. 41730, n. 167, n. 183, 2000.
dc.identifier0925-2312
dc.identifierWOS:000086007800012
dc.identifier10.1016/S0925-2312(99)00176-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/62328
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/62328
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/62328
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1267040
dc.descriptionThe ability of human beings to retrieve information on the basis of associated cues continues to elicit great interest among researchers. Investigations of how the brain is capable to make such associations from partial information have led to a variety of theoretical neural network models that act as associative memories. Several researchers have had significant success in retrieving complete stored patterns from noisy or incomplete input pattern keys by using morphological associative memories. Thus far morphological associative memories have been employed in two different ways: a direct approach which is suitable for input patterns containing either dilative or erosive noise and an indirect one for arbitrarily corrupted input patterns which is based on kernel vectors. In a recent paper (P. Sussner, in: Proceedings of the International ICSA/IFAC Symposium on Neural Computation, Vienna, September 1998), we suggested how to select these kernel vectors and we deduced exact statements on the amount of noise which is permissible for perfect recall, In this paper, we establish the proofs for all our claims made about the choice of kernel Vectors and perfect recall in kernel method applications. Moreover, we provide arguments for the success of both approaches beyond the experimental results presented up to this point. (C) 2000 Elsevier Science B.V. All rights reserved.
dc.description31
dc.description41730
dc.description167
dc.description183
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationNeurocomputing
dc.relationNeurocomputing
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectassociative memories
dc.subjectmorphological neural networks
dc.subjectkernel method
dc.subjectkernel vectors
dc.subjectNeural Networks
dc.titleObservations on morphological associative memories and the kernel method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución