dc.creatorHuckins, JN
dc.creatorPetty, JD
dc.creatorLebo, JA
dc.creatorAlmeida, FV
dc.creatorBooij, K
dc.creatorAlvarez, DA
dc.creatorClark, RC
dc.creatorMogensen, BB
dc.date2002
dc.date36892
dc.date2014-11-15T10:26:08Z
dc.date2015-11-26T16:10:35Z
dc.date2014-11-15T10:26:08Z
dc.date2015-11-26T16:10:35Z
dc.date.accessioned2018-03-28T22:59:12Z
dc.date.available2018-03-28T22:59:12Z
dc.identifierEnvironmental Science & Technology. Amer Chemical Soc, v. 36, n. 1, n. 85, n. 91, 2002.
dc.identifier0013-936X
dc.identifierWOS:000173162600029
dc.identifier10.1021/es010991w
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/61634
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/61634
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/61634
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266909
dc.descriptionPermeability/performance reference compounds (PRCs) are analytically noninterfering organic compounds with moderate to high fugacity from semipermeable membrane devices (SPMDs) that are added to the lipid prior to membrane enclosure. Assuming that isotropic exchange kinetics (IEK) apply and that SPMD-water partition coefficients are known, measurement of PRC dissipation rate constants during SPMD field exposures and laboratory calibration studies permits the calculation of an exposure adjustment factor (EAF). In theory, PRC-derived EAF ratios reflect changes in SPMD sampling rates (relative to laboratory data) due to differences in exposure temperature, membrane biofouling, and flow velocity-turbulence at the membrane surface. Thus, the PRC approach should allow for more accurate estimates of target solute/vapor concentrations in an exposure medium. Under some exposure conditions, the impact of environmental variables on SPMD sampling rates may approach an order of magnitude. The results of this study suggest that most of the effects of temperature, facial velocity-turbulence, and biofouling on the uptake rates of analytes with a wide range of hydrophobicities can be deduced from PRCs with a much narrower range of hydrophobicities. Finally, our findings indicate that the use of PRCs permits prediction of in situ SPMD sampling rates within 2-fold of directly measured values.
dc.description36
dc.description1
dc.description85
dc.description91
dc.languageen
dc.publisherAmer Chemical Soc
dc.publisherWashington
dc.publisherEUA
dc.relationEnvironmental Science & Technology
dc.relationEnviron. Sci. Technol.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectPartition-coefficients
dc.subjectUptake Kinetics
dc.subjectWater
dc.subjectSpmds
dc.subjectAir
dc.titleDevelopment of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución