dc.creatorKochloukova, DH
dc.date2007
dc.date2014-11-15T07:20:41Z
dc.date2015-11-26T16:09:53Z
dc.date2014-11-15T07:20:41Z
dc.date2015-11-26T16:09:53Z
dc.date.accessioned2018-03-28T22:58:30Z
dc.date.available2018-03-28T22:58:30Z
dc.identifierCommunications In Algebra. Taylor & Francis Inc, v. 35, n. 1, n. 253, n. 259, 2007.
dc.identifier0092-7872
dc.identifierWOS:000244141500019
dc.identifier10.1080/00927870601041706
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76501
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76501
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76501
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266733
dc.descriptionLet G he a finitely generated group, and A a Z [G]-module of flat dimension n such that the homological invariant Sigma(n)(G, A) is not empty. We show that A has projective dimension n as a Z[G]-module. In particular, if G is a group of homological dimension hd(G) = n such that the homological invariant Sigma(n)(G, Z) is not empty, then G has cohomological dimension cd(G) = n. We show that if G is a finitely generated soluble group, the converse is true subject to taking a subgroup of finite index, i.e., the equality cd(G) = hd(G) implies that there is a subgroup H of finite index in G such that Sigma(infinity)(H, Z) not equal 0.
dc.description35
dc.description1
dc.description253
dc.description259
dc.languageen
dc.publisherTaylor & Francis Inc
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationCommunications In Algebra
dc.relationCommun. Algebr.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectcohomological dimension
dc.subjectflat dimension
dc.subjectGeometric Invariant
dc.subjectValuations
dc.titleA note on projective and flat dimensions and the Bieri-Neumann-Strebel-Renz Sigma-invariants
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución