dc.creatorGarcia, AAF
dc.creatorKido, EA
dc.creatorMeza, AN
dc.creatorSouza, HMB
dc.creatorPinto, LR
dc.creatorPastina, MM
dc.creatorLeite, CS
dc.creatorda Silva, JAG
dc.creatorUlian, EC
dc.creatorFigueira, A
dc.creatorSouza, AP
dc.date2006
dc.dateJAN
dc.date2014-11-15T07:17:31Z
dc.date2015-11-26T16:09:51Z
dc.date2014-11-15T07:17:31Z
dc.date2015-11-26T16:09:51Z
dc.date.accessioned2018-03-28T22:58:27Z
dc.date.available2018-03-28T22:58:27Z
dc.identifierTheoretical And Applied Genetics. Springer, v. 112, n. 2, n. 298, n. 314, 2006.
dc.identifier0040-5752
dc.identifierWOS:000234026000011
dc.identifier10.1007/s00122-005-0129-6
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/61587
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/61587
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/61587
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266724
dc.descriptionSugarcane (Saccharum spp.) is a clonally propagated outcrossing polyploid crop of great importance in tropical agriculture. Up to now, all sugarcane genetic maps had been developed using either full-sib progenies derived from interspecific crosses or from selfing, both approaches not directly adopted in conventional breeding. We have developed a single integrated genetic map using a population derived from a cross between two pre-commercial cultivars ('SP80-180' x 'SP80-4966') using a novel approach based on the simultaneous maximum-likelihood estimation of linkage and linkage phases method specially designed for outcrossing species. From a total of 1,118 single-dose markers (RFLP, SSR and AFLP) identified, 39% derived from a testcross configuration between the parents segregating in a 1:1 fashion, while 61% segregated 3:1, representing heterozygous markers in both parents with the same genotypes. The markers segregating 3:1 were used to establish linkage between the testcross markers. The final map comprised of 357 linked markers, including 57 RFLPs, 64 SSRs and 236 AFLPs that were assigned to 131 co-segregation groups, considering a LOD score of 5, and a recombination fraction of 37.5 cM with map distances estimated by Kosambi function. The co-segregation groups represented a total map length of 2,602.4 cM, with a marker density of 7.3 cM. When the same data were analyzed using JoinMap software, only 217 linked markers were assigned to 98 co-segregation groups, spanning 1,340 cM, with a marker density of 6.2 cM. The maximum-likelihood approach reduced the number of unlinked markers to 761 (68.0%), compared to 901 (80.5%) using JoinMap. All the co-segregation groups obtained using JoinMap were present in the map constructed based on the maximum-likelihood method. Differences on the marker order within the co-segregation groups were observed between the two maps. Based on RFLP and SSR markers, 42 of the 131 co-segregation groups were assembled into 12 putative homology groups. Overall, the simultaneous maximum-likelihood estimation of linkage and linkage phases was more efficient than the method used by JoinMap to generate an integrated genetic map of sugarcane.
dc.description112
dc.description2
dc.description298
dc.description314
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationTheoretical And Applied Genetics
dc.relationTheor. Appl. Genet.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectlinkage map
dc.subjectAFLP
dc.subjectSSR
dc.subjectRFLP
dc.subjectpolyploid
dc.subjectPseudo-testcross Strategy
dc.subjectMarkers
dc.subjectAflp
dc.subjectRapd
dc.subjectConstruction
dc.subjectSpontaneum
dc.subjectL.
dc.subjectMicrosatellite
dc.subjectPolymorphisms
dc.subjectOrganization
dc.titleDevelopment of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución