dc.creatorColombo, J
dc.creatorKoshlukov, P
dc.date2004
dc.date42005
dc.date2014-11-15T06:22:22Z
dc.date2015-11-26T16:09:40Z
dc.date2014-11-15T06:22:22Z
dc.date2015-11-26T16:09:40Z
dc.date.accessioned2018-03-28T22:58:17Z
dc.date.available2018-03-28T22:58:17Z
dc.identifierLinear Algebra And Its Applications. Elsevier Science Inc, v. 377, n. 53, n. 67, 2004.
dc.identifier0024-3795
dc.identifierWOS:000187119800004
dc.identifier10.1016/j.laa.2003.07.011
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78713
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/78713
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78713
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266682
dc.descriptionWe exhibit minimal bases of the polynomial identities for the matrix algebra M-2(K) of order two over an infinite field K of characteristic p not equal 2. We show that when p = 3 the T-ideal of this algebra is generated by three independent identities, and when p > 3 one needs only two identities: the standard identity of degree four and the Hall identity. Note that the same holds when the base field is of characteristic 0. Furthermore, using the exact form of the basis of the identities for M-2(K) we give finite minimal set of generators of the T-space of the central polynomials for the algebra M-2(K). The set of generators depends on the characteristic of the field as well. (C) 2003 Elsevier Inc. All rights reserved.
dc.description377
dc.description53
dc.description67
dc.languageen
dc.publisherElsevier Science Inc
dc.publisherNew York
dc.publisherEUA
dc.relationLinear Algebra And Its Applications
dc.relationLinear Alg. Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectcentral polynomial
dc.subjectT-space
dc.subjectbasis of identities
dc.subjectInvariant Theory
dc.subjectIdentities
dc.titleCentral polynomials in the matrix algebra of order two
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución