dc.creatorGoulart, PR
dc.creatorSpinelli, JE
dc.creatorCheung, N
dc.creatorGarcia, A
dc.date2010
dc.date42005
dc.date2014-11-15T02:11:07Z
dc.date2015-11-26T16:09:20Z
dc.date2014-11-15T02:11:07Z
dc.date2015-11-26T16:09:20Z
dc.date.accessioned2018-03-28T22:57:56Z
dc.date.available2018-03-28T22:57:56Z
dc.identifierMaterials Chemistry And Physics. Elsevier Science Sa, v. 119, n. 41671, n. 272, n. 278, 2010.
dc.identifier0254-0584
dc.identifierWOS:000272308600046
dc.identifier10.1016/j.matchemphys.2009.08.063
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73796
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/73796
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73796
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266593
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe aim of the present investigation was to contribute to provide a basis for understanding how to control solidification parameters, microstructure and mechanical strength of Al-Fe alloys. Upward directional solidification experiments have been carried-out with commercially pure Al and Al-0.5 wt.% Fe, Al-1.0 wt.% Fe and Al-1.5 wt.% Fe alloys. The tensile tests results have been correlated to cell spacing (lambda(1)). since cellular growth has prevailed along all obtained Al-Fe castings. The used casting assembly was designed in such way that the heat was extracted only through the water-cooled system at the bottom of the casting. In order to investigate the nature of Al-Fe intermetallic fibers, they were extracted from the aluminum-rich matrix by using a dissolution technique. These fibers were then investigated by SEW EDAX microscopy. It was found that the ultimate tensile strength, yield tensile strength and elongation increase with decreasing cell spacing. The highest ultimate tensile strength was that obtained for the most refined microstructure, i.e. for the Al-1.5 wt.% Fe alloy sample, where a higher density of eutectic fibers was found distributed in a more homogeneous way along the casting section due to lower cell spacings. In contrast, the elongation was found to decrease with increasing solute content. (C) 2009 Elsevier B.V. All rights reserved.
dc.description119
dc.description41671
dc.description272
dc.description278
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAEPEX-UNICAMP
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Science Sa
dc.publisherLausanne
dc.publisherSuíça
dc.relationMaterials Chemistry And Physics
dc.relationMater. Chem. Phys.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectMetals and alloys
dc.subjectMicrostructure
dc.subjectThermal analysis
dc.subjectCell spacing
dc.subjectMechanical properties
dc.subjectAl-Fe alloys
dc.subjectTransient Directional Solidification
dc.subjectLaser Surface-treatment
dc.subjectPb-sb Alloys
dc.subjectUnsteady-state
dc.subjectHeat-flow
dc.subjectSn-pb
dc.subjectMicrostructure
dc.subjectGrowth
dc.subjectParameters
dc.subjectParticles
dc.titleThe effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución