dc.creatorde Paiva, FO
dc.date2006
dc.dateJUN
dc.date2014-11-15T01:01:21Z
dc.date2015-11-26T16:09:18Z
dc.date2014-11-15T01:01:21Z
dc.date2015-11-26T16:09:18Z
dc.date.accessioned2018-03-28T22:57:53Z
dc.date.available2018-03-28T22:57:53Z
dc.identifierDiscrete And Continuous Dynamical Systems. Amer Inst Mathematical Sciences, v. 15, n. 2, n. 669, n. 680, 2006.
dc.identifier1078-0947
dc.identifierWOS:000235664000016
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81994
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81994
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81994
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266582
dc.descriptionIn this paper we establish the existence of positive and multiple solutions for the quasilinear elliptic problem -Delta(p)u = g(x, u) in Omega u = 0 on partial derivative Omega, where Omega subset of R-N is an open bounded domain with smooth boundary partial derivative Omega, g:Omega x R -> R is a Caratheodory function such that g(x, 0) = 0 and which is asymptotically linear. We suppose that g(x, t)/t tends to an L-r-function, r > N/p if 1 < p <= N and r = 1 if p > N, which can change sign. We consider both the resonant and the nonresonant cases.
dc.description15
dc.description2
dc.description669
dc.description680
dc.languageen
dc.publisherAmer Inst Mathematical Sciences
dc.publisherSpringfield
dc.publisherEUA
dc.relationDiscrete And Continuous Dynamical Systems
dc.relationDiscret. Contin. Dyn. Syst.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectquasilinear problems
dc.subjectindefinite weight
dc.subjectmultiplicity of solutions
dc.subjectElliptic Problems
dc.subjectNonlinearity
dc.subjectEquations
dc.titleMultiple solutions for a class of quasilinear problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución