dc.creator | de Paiva, FO | |
dc.date | 2006 | |
dc.date | JUN | |
dc.date | 2014-11-15T01:01:21Z | |
dc.date | 2015-11-26T16:09:18Z | |
dc.date | 2014-11-15T01:01:21Z | |
dc.date | 2015-11-26T16:09:18Z | |
dc.date.accessioned | 2018-03-28T22:57:53Z | |
dc.date.available | 2018-03-28T22:57:53Z | |
dc.identifier | Discrete And Continuous Dynamical Systems. Amer Inst Mathematical Sciences, v. 15, n. 2, n. 669, n. 680, 2006. | |
dc.identifier | 1078-0947 | |
dc.identifier | WOS:000235664000016 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81994 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/81994 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/81994 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1266582 | |
dc.description | In this paper we establish the existence of positive and multiple solutions for the quasilinear elliptic problem -Delta(p)u = g(x, u) in Omega u = 0 on partial derivative Omega, where Omega subset of R-N is an open bounded domain with smooth boundary partial derivative Omega, g:Omega x R -> R is a Caratheodory function such that g(x, 0) = 0 and which is asymptotically linear. We suppose that g(x, t)/t tends to an L-r-function, r > N/p if 1 < p <= N and r = 1 if p > N, which can change sign. We consider both the resonant and the nonresonant cases. | |
dc.description | 15 | |
dc.description | 2 | |
dc.description | 669 | |
dc.description | 680 | |
dc.language | en | |
dc.publisher | Amer Inst Mathematical Sciences | |
dc.publisher | Springfield | |
dc.publisher | EUA | |
dc.relation | Discrete And Continuous Dynamical Systems | |
dc.relation | Discret. Contin. Dyn. Syst. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | quasilinear problems | |
dc.subject | indefinite weight | |
dc.subject | multiplicity of solutions | |
dc.subject | Elliptic Problems | |
dc.subject | Nonlinearity | |
dc.subject | Equations | |
dc.title | Multiple solutions for a class of quasilinear problems | |
dc.type | Artículos de revistas | |