dc.creatordos Santos, EM
dc.date2008
dc.date37043
dc.date2014-11-14T22:27:26Z
dc.date2015-11-26T16:08:46Z
dc.date2014-11-14T22:27:26Z
dc.date2015-11-26T16:08:46Z
dc.date.accessioned2018-03-28T22:57:20Z
dc.date.available2018-03-28T22:57:20Z
dc.identifierJournal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 342, n. 1, n. 277, n. 297, 2008.
dc.identifier0022-247X
dc.identifierWOS:000254880300022
dc.identifier10.1016/j.jmaa.2007.11.056
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/82020
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/82020
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/82020
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266446
dc.descriptionWe consider a fourth-order quasilinear nonhomogeneous equation which is equivalent to a nonhomogeneous Hamiltonian system. The purpose of this work is to prove the existence of at least two solutions for such equation when a certain parameter is small enough. Furthermore, under an additional hypothesis on positiveness of the nonhomogeneous part we prove that our solutions are positive. (C) 2007 Elsevier Inc. All rights reserved.
dc.description342
dc.description1
dc.description277
dc.description297
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Mathematical Analysis And Applications
dc.relationJ. Math. Anal. Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectfourth-order quasilinear equation
dc.subjectsemilinear Hamiltonian system
dc.subjectnonhomogeneous problem
dc.subjectCritical Sobolev Exponents
dc.subjectPositive Solutions
dc.subjectElliptic-equations
dc.subjectChanges Sign
dc.subjectSystems
dc.titleMultiplicity of solutions for a fourth-order quasilinear nonhomogeneous equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución