dc.creatorSan Martin, LAB
dc.creatorSantana, AJ
dc.date2002
dc.date2014-11-14T22:26:37Z
dc.date2015-11-26T16:08:44Z
dc.date2014-11-14T22:26:37Z
dc.date2015-11-26T16:08:44Z
dc.date.accessioned2018-03-28T22:57:18Z
dc.date.available2018-03-28T22:57:18Z
dc.identifierMonatshefte Fur Mathematik. Springer-verlag Wien, v. 136, n. 2, n. 151, n. 173, 2002.
dc.identifier0026-9255
dc.identifierWOS:000176602000005
dc.identifier10.1007/s006050200040
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73729
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/73729
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73729
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266439
dc.descriptionLet G be a noncompact semi-simple Lie group and S subset of G a Lie semigroup with nonempty interior. We study the homotopy groups pi(n)(S), n greater than or equal to 1, of S, Generalizing a well known fact for G, it is proved that there exists a compact and connected subgroup K(S) subset of G such that pi(n)(S) is isomorphic to pi(n)(K(S)). Furthermore, there exists a coset K(S) z contained in int S which is a deformation retract of S.
dc.description136
dc.description2
dc.description151
dc.description173
dc.languageen
dc.publisherSpringer-verlag Wien
dc.publisherVienna
dc.publisherAustria
dc.relationMonatshefte Fur Mathematik
dc.relationMon.heft. Math.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectsemigroups
dc.subjectsemi-simple Lie groups
dc.subjecthomotopy groups
dc.subjectflag manifolds
dc.subjectCompression Semigroups
dc.subjectFlag Manifolds
dc.subjectSpaces
dc.subjectSubsemigroups
dc.titleThe homotopy type of Lie semigroups in semi-simple Lie groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución