dc.creatorUjevic, M
dc.creatorLetelier, PS
dc.date2002
dc.dateAUG 7
dc.date2014-11-14T21:40:07Z
dc.date2015-11-26T16:08:32Z
dc.date2014-11-14T21:40:07Z
dc.date2015-11-26T16:08:32Z
dc.date.accessioned2018-03-28T22:57:06Z
dc.date.available2018-03-28T22:57:06Z
dc.identifierClassical And Quantum Gravity. Iop Publishing Ltd, v. 19, n. 15, n. 4085, n. 4093, 2002.
dc.identifier0264-9381
dc.identifierWOS:000177799300016
dc.identifier10.1088/0264-9381/19/15/314
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81118
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81118
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81118
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266384
dc.descriptionNumerical solutions for the integral curves of the velocity field (streamlines), the density contours and the accretion rate of a steady-state flow of an ideal fluid with p = Kn(gamma) equation of state orbiting in a core-dipole-shell system are presented. For gamma not equal 2, we found that the nonlinear contribution appearing in the partial differential equation for the velocity potential has little effect in the form of the streamlines and density contour lines, but can be noticed in the density values. The study of several cases indicates that this appears to be the general situation. The accretion rate was found to increase when the constant gamma decreases.
dc.description19
dc.description15
dc.description4085
dc.description4093
dc.languageen
dc.publisherIop Publishing Ltd
dc.publisherBristol
dc.publisherInglaterra
dc.relationClassical And Quantum Gravity
dc.relationClass. Quantum Gravity
dc.rightsfechado
dc.rightshttp://iopscience.iop.org/page/copyright
dc.sourceWeb of Science
dc.subjectGeneral-relativity
dc.subjectBlack-hole
dc.subjectSimulations
dc.subjectAccretion
dc.titlePotential flows in a core-dipole-shell system: numerical results
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución