dc.creatorMuniz, RCD
dc.creatorde Sousa, SAA
dc.creatorPereira, FD
dc.creatorFerreira, MMC
dc.date2010
dc.dateAPR 22
dc.date2014-07-30T14:05:59Z
dc.date2015-11-26T16:08:14Z
dc.date2014-07-30T14:05:59Z
dc.date2015-11-26T16:08:14Z
dc.date.accessioned2018-03-28T22:56:48Z
dc.date.available2018-03-28T22:56:48Z
dc.identifierJournal Of Physical Chemistry A. Amer Chemical Soc, v. 114, n. 15, n. 5187, n. 5194, 2010.
dc.identifier1089-5639
dc.identifierWOS:000276562800019
dc.identifier10.1021/jp9106316
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57912
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57912
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266308
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionA theoretical study of propylene oxide acid-catalyzed hydrolysis was performed by investigation of the S(N)1 and S(N)2-like mechanisms. By using chemometric tools, hierarchical cluster analysis (HCA), and principal component analysis (PCA), the MP2/6-311++G** level of theory was selected from HF, MP2, and DFT as the best method to describe the geometry of the basic skeleton (oxirane). At this level of theory, geometry optimizations, vibrational frequencies, intrinsic reaction coordinate (IRC), and other thermodynamic calculations have shown that the borderline S(N)2 mechanism is more favorable than pure S(N)2 and S(N)1 mechanisms in the gas phase. In the S(N)1 mechanism, the existence of the typical carbocation was not observed, and furthermore, the possibility of epoxide conversion to a protonated aldehyde was indicated, even in the presence of a water molecule (nucleophile). The Chelpg charge distribution of the reactants, steric hindrance, synchronous bond breaking-formation and trajectory angle of nucleophilic attack are discussed for pure and borderline S(N)2 mechanisms. Solvation effect calculations indicate that the pure S(N)2 mechanism is more favorable than borderline S(N)2 and S(N)1 mechanisms. This is discussed in terms of hydrogen bond formation.
dc.description114
dc.description15
dc.description5187
dc.description5194
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherAmer Chemical Soc
dc.publisherWashington
dc.publisherEUA
dc.relationJournal Of Physical Chemistry A
dc.relationJ. Phys. Chem. A
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectSubstituted Ethylene Oxides
dc.subjectRing-opening Reaction
dc.subjectMechanism
dc.subjectOxirane
dc.subjectPath
dc.subjectDerivatives
dc.subjectModel
dc.titleTheoretical Study of Acid-Catalyzed Hydrolysis of Epoxides
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución