dc.creator | Guillen-Gonzalez, F | |
dc.creator | Planas, G | |
dc.date | 2009 | |
dc.date | OCT | |
dc.date | 2014-11-14T19:42:59Z | |
dc.date | 2015-11-26T16:08:00Z | |
dc.date | 2014-11-14T19:42:59Z | |
dc.date | 2015-11-26T16:08:00Z | |
dc.date.accessioned | 2018-03-28T22:56:40Z | |
dc.date.available | 2018-03-28T22:56:40Z | |
dc.identifier | Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik. Wiley-v C H Verlag Gmbh, v. 89, n. 10, n. 810, n. 822, 2009. | |
dc.identifier | 0044-2267 | |
dc.identifier | WOS:000270688900002 | |
dc.identifier | 10.1002/zamm.200800089 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81858 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/81858 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/81858 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1266274 | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | In this paper, the two dimensional incompressible Navier-Stokes problem in a bounded domain subject to nonhomogeneous Navier friction boundary conditions is considered. We establish the existence, uniqueness, and regularity of solutions to such problem and we demonstrate convergence towards the incompressible 2D Euler equations in the inviscid limit. We also show the stability and convergence of a time discrete implicit Euler's scheme as both parameters, viscosity and time step, go to zero. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | |
dc.description | 89 | |
dc.description | 10 | |
dc.description | 810 | |
dc.description | 822 | |
dc.description | MEC projects (Spain) [MTM2006-07932, PHB2005-0042-PC] | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | MEC projects (Spain) [MTM2006-07932, PHB2005-0042-PC] | |
dc.description | CAPES [BEX3923/06-1] | |
dc.description | CNPq [307173/2006-2] | |
dc.description | FAPESP [2007/51490-7] | |
dc.language | en | |
dc.publisher | Wiley-v C H Verlag Gmbh | |
dc.publisher | Weinheim | |
dc.publisher | Alemanha | |
dc.relation | Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik | |
dc.relation | ZAMM-Z. Angew. Math. Mech. | |
dc.rights | fechado | |
dc.rights | http://olabout.wiley.com/WileyCDA/Section/id-406071.html | |
dc.source | Web of Science | |
dc.subject | Navier-Stokes equations | |
dc.subject | Euler equations | |
dc.subject | inviscid limit | |
dc.subject | vorticity formulation | |
dc.subject | discrete in time schemes | |
dc.subject | stability | |
dc.subject | convergence | |
dc.subject | Inviscid Limit | |
dc.subject | Discretization Scheme | |
dc.subject | Boundary-conditions | |
dc.subject | Convergence | |
dc.subject | Stability | |
dc.title | On the asymptotic behaviour of the 2D Navier-Stokes equations with Navier friction conditions towards Euler equations | |
dc.type | Artículos de revistas | |