dc.creatorGuillen-Gonzalez, F
dc.creatorPlanas, G
dc.date2009
dc.dateOCT
dc.date2014-11-14T19:42:59Z
dc.date2015-11-26T16:08:00Z
dc.date2014-11-14T19:42:59Z
dc.date2015-11-26T16:08:00Z
dc.date.accessioned2018-03-28T22:56:40Z
dc.date.available2018-03-28T22:56:40Z
dc.identifierZamm-zeitschrift Fur Angewandte Mathematik Und Mechanik. Wiley-v C H Verlag Gmbh, v. 89, n. 10, n. 810, n. 822, 2009.
dc.identifier0044-2267
dc.identifierWOS:000270688900002
dc.identifier10.1002/zamm.200800089
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81858
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81858
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81858
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266274
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionIn this paper, the two dimensional incompressible Navier-Stokes problem in a bounded domain subject to nonhomogeneous Navier friction boundary conditions is considered. We establish the existence, uniqueness, and regularity of solutions to such problem and we demonstrate convergence towards the incompressible 2D Euler equations in the inviscid limit. We also show the stability and convergence of a time discrete implicit Euler's scheme as both parameters, viscosity and time step, go to zero. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.description89
dc.description10
dc.description810
dc.description822
dc.descriptionMEC projects (Spain) [MTM2006-07932, PHB2005-0042-PC]
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionMEC projects (Spain) [MTM2006-07932, PHB2005-0042-PC]
dc.descriptionCAPES [BEX3923/06-1]
dc.descriptionCNPq [307173/2006-2]
dc.descriptionFAPESP [2007/51490-7]
dc.languageen
dc.publisherWiley-v C H Verlag Gmbh
dc.publisherWeinheim
dc.publisherAlemanha
dc.relationZamm-zeitschrift Fur Angewandte Mathematik Und Mechanik
dc.relationZAMM-Z. Angew. Math. Mech.
dc.rightsfechado
dc.rightshttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.sourceWeb of Science
dc.subjectNavier-Stokes equations
dc.subjectEuler equations
dc.subjectinviscid limit
dc.subjectvorticity formulation
dc.subjectdiscrete in time schemes
dc.subjectstability
dc.subjectconvergence
dc.subjectInviscid Limit
dc.subjectDiscretization Scheme
dc.subjectBoundary-conditions
dc.subjectConvergence
dc.subjectStability
dc.titleOn the asymptotic behaviour of the 2D Navier-Stokes equations with Navier friction conditions towards Euler equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución