dc.creatorKochloukova, DH
dc.date2010
dc.dateJAN
dc.date2014-11-14T19:42:12Z
dc.date2015-11-26T16:07:59Z
dc.date2014-11-14T19:42:12Z
dc.date2015-11-26T16:07:59Z
dc.date.accessioned2018-03-28T22:56:39Z
dc.date.available2018-03-28T22:56:39Z
dc.identifierJournal Of Group Theory. Walter De Gruyter & Co, v. 13, n. 1, n. 1, n. 19, 2010.
dc.identifier1433-5883
dc.identifierWOS:000274235800001
dc.identifier10.1515/JGT.2009.028
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81840
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81840
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81840
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266269
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe show that limit groups are free-by-(torsion-free nilpotent) and have non-positive Euler characteristic. We prove that for any non-abelian limit group the Bieri-Neumann-Strebel-Renz S-invariants are the empty set. Let s >= 3 be a natural number and G be a subdirect product of non-abelian limit groups intersecting each factor non-trivially. We show that the homology groups of any subgroup of finite index in G, in dimension i <= s and with coefficients in Q, are finite-dimensional if and only if the projection of G to the direct product of any s of the limit groups has finite index. The case s 2 is a deep result of M. Bridson, J. Howie, C. F. Miller III and H. Short.
dc.descriptiono TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.
dc.description13
dc.description1
dc.description1
dc.description19
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherWalter De Gruyter & Co
dc.publisherBerlin
dc.publisherAlemanha
dc.relationJournal Of Group Theory
dc.relationJ. Group Theory
dc.rightsembargo
dc.sourceWeb of Science
dc.subjectIrreducible Affine Varieties
dc.subjectHigher Geometric Invariants
dc.subjectDiophantine Geometry
dc.subjectElementary Theory
dc.subjectSigma-invariants
dc.subjectGroup Rings
dc.subjectValuations
dc.subjectSubgroups
dc.subjectSets
dc.titleOn subdirect products of type FPm of limit groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución