dc.creatorCima, A
dc.creatorLlibre, J
dc.creatorTeixeira, MA
dc.date2008
dc.date2014-11-14T18:17:55Z
dc.date2015-11-26T16:07:51Z
dc.date2014-11-14T18:17:55Z
dc.date2015-11-26T16:07:51Z
dc.date.accessioned2018-03-28T22:56:30Z
dc.date.available2018-03-28T22:56:30Z
dc.identifierApplicable Analysis. Taylor & Francis Ltd, v. 87, n. 2, n. 149, n. 164, 2008.
dc.identifier0003-6811
dc.identifierWOS:000253642600002
dc.identifier10.1080/00036810701556136
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81056
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81056
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81056
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1266234
dc.descriptionIn the qualitative study of a differential system it is important to know its limit cycles and their stability. Here through two relevant applications, we show how to study the existence of limit cycles and their stability using the averaging theory. The first application is a 4-dimensional system which is a model arising in synchronization phenomena. Under the natural assumptions of this problem, we can prove the existence of a stable limit cycle. It is known that perturbing the linear center (x) over dot = - y, (y) over dot = x, up to first order by a family of polynomial differential systems of degree n in R-2, there are perturbed systems with (n - 1)/2 limit cycles if n is odd, and (n - 2)/2 limit cycles if n is even. The second application consists in extending this classical result to dimension 3. More precisely, perturbing the system (x) over dot -y, (y) over dot x, z (over dot) = 0, up to first order by a family of polynomial differential systems of degree n in R 3, we can obtain at most n(n - 1)/2 limit cycles. Moreover, there are such perturbed systems having at least n(n - 1)/ 2 limit cycles.
dc.description87
dc.description2
dc.description149
dc.description164
dc.languageen
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.publisherInglaterra
dc.relationApplicable Analysis
dc.relationAppl. Anal.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectlimit cycle
dc.subjectsynchronization
dc.subjectaveraging method
dc.subjectlinear center
dc.subjectpolynomial differential system
dc.subjectVector
dc.titleLimit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución