dc.creatorFurtado, MF
dc.date2005
dc.dateAPR 1
dc.date2014-11-14T13:04:24Z
dc.date2015-11-26T16:06:36Z
dc.date2014-11-14T13:04:24Z
dc.date2015-11-26T16:06:36Z
dc.date.accessioned2018-03-28T22:55:25Z
dc.date.available2018-03-28T22:55:25Z
dc.identifierJournal Of Mathematical Analysis And Applications. Academic Press Inc Elsevier Science, v. 304, n. 1, n. 170, n. 188, 2005.
dc.identifier0022-247X
dc.identifierWOS:000227733900013
dc.identifier10.1016/j.jmaa.2004.09.012
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/82188
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/82188
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/82188
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265957
dc.descriptionWe deal with the quasilinear Schrodinger equation -div(vertical bar del u vertical bar p-2 del u) + (lambda a(x) + 1)vertical bar u vertical bar(p-2) u = vertical bar u vertical bar(q-2)u, u is an element of W-1,W-p(R-N), where 2 <= p < N, lambda > 0, and p < q < p* = Np/(N - p). The potential a >= 0 has a potential well and is invariant under an orthogonal involution of RN. We apply variational methods to obtain, for), large, existence of solutions which change sign exactly once. We study the concentration behavior of these solutions as lambda -> infinity. By taking q close p*, we also relate the number of solutions which change sign exactly once with the equivariant topology of the set where the potential a vanishes. (c) 2004 Elsevier Inc. All rights reserved.
dc.description304
dc.description1
dc.description170
dc.description188
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Mathematical Analysis And Applications
dc.relationJ. Math. Anal. Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectSchrodinger equation
dc.subjectp-Laplacian
dc.subjectequivariant category
dc.subjectsymmetry
dc.subjectPositive Solutions
dc.subjectNumber
dc.subjectPrinciple
dc.subjectTopology
dc.subjectDomain
dc.titleMultiple minimal nodal solutions for a quasilinear Schrodinger equation with symmetric potential
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución