dc.creatorFernandes, KC
dc.creatorDa Silva, LM
dc.creatorBoodts, JFC
dc.creatorDe Faria, LA
dc.date2006
dc.date42064
dc.date2014-11-20T05:02:30Z
dc.date2015-11-26T16:06:15Z
dc.date2014-11-20T05:02:30Z
dc.date2015-11-26T16:06:15Z
dc.date.accessioned2018-03-28T22:55:06Z
dc.date.available2018-03-28T22:55:06Z
dc.identifierElectrochimica Acta. Pergamon-elsevier Science Ltd, v. 51, n. 14, n. 2809, n. 2818, 2006.
dc.identifier0013-4686
dc.identifierWOS:000236478800003
dc.identifier10.1016/j.electacta.2005.07.056
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73897
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/73897
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73897
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265878
dc.descriptionTi-supported (Ti + Ru + Ce)O-2 electrodes, prepared at 450 degrees C, were characterised by XRD, open-circuit potential (E-oc), capacity data (C) and morphology factor (phi) determinations. XRD measurements showed mixed oxides present a low degree of crystallinity. E-oc-data and CV-spectra support surface electrochemistry of mixed oxides is governed by the Ru(III)/Ru(IV) redox couple. In situ surface characterisation revealed the active surface area increases on increasing nominal CeO2-content. phi-Values remained in the 0.18-0.3 interval supporting the coatings have a low electrochemical porosity. Kinetics was studied recording polarisation and chronopotentiometric curves, which permitted to determine the Tafel slope and reaction order (with respect to OH-), in the low and high overpotential domains. Tafel slope data, b, presented a dependence on overpotential and oxide composition indicating the OER electrode mechanism depends on these variables. A unit reaction order with respect to OH- was found for all electrode compositions investigated. The theoretical analysis of the electrode mechanism permitted to analyse the changes in the experimental Tafel slopes taking into account modifications in the apparent electronic transfer coefficient, alpha(ap). Analysis of the true and apparent electrocatalytic activities revealed the O-2-evolution reaction rate is affected by oxide composition due to morphologic effects. (c) 2005 Elsevier Ltd. All rights reserved.
dc.description51
dc.description14
dc.description2809
dc.description2818
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationElectrochimica Acta
dc.relationElectrochim. Acta
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectcerium
dc.subjectmorphology factor
dc.subjectkinetics
dc.subjectapparent electronic transfer coefficient
dc.subjectelectrocatalytic activity
dc.subjectOxygen Evolution
dc.subjectSulfuric-acid
dc.subjectOxide Anodes
dc.subjectChlorine Evolution
dc.subjectAlkaline-solution
dc.subjectOzone Production
dc.subjectElectrodes
dc.subjectMechanism
dc.titleSurface, kinetics and electrocatalytic properties of the Ti/Ti + Ru+Ce)O-2-system for the oxygen evolution reaction in alkaline medium
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución