dc.creatorSerra, GLO
dc.creatorBottura, CP
dc.date2006
dc.dateMAR
dc.date2014-11-14T06:51:38Z
dc.date2015-11-26T16:05:01Z
dc.date2014-11-14T06:51:38Z
dc.date2015-11-26T16:05:01Z
dc.date.accessioned2018-03-28T22:54:08Z
dc.date.available2018-03-28T22:54:08Z
dc.identifierEngineering Applications Of Artificial Intelligence. Pergamon-elsevier Science Ltd, v. 19, n. 2, n. 157, n. 167, 2006.
dc.identifier0952-1976
dc.identifierWOS:000235480200005
dc.identifier10.1016/j.engappai.2005.08.003
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/82169
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/82169
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/82169
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265632
dc.descriptionThis work proposes a gain scheduling adaptive control scheme based on fuzzy systems, neural networks and genetic algorithms for nonlinear plants. A fuzzy PI controller is developed, which is a discrete time version of a conventional one. Its data base as well as the constant PI control gains are optimally designed by using a genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown to demonstrate the efficiency of the proposed structure for a DC servomotor adaptive speed control system used as an actuator of robotic manipulators. (c) 2005 Elsevier Ltd. All rights reserved.
dc.descriptionO TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE NOVEMBRO DE 2014.
dc.description19
dc.description2
dc.description157
dc.description167
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationEngineering Applications Of Artificial Intelligence
dc.relationEng. Appl. Artif. Intell.
dc.rightsembargo
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectneural-genetic-fuzzy systems
dc.subjectadaptive control
dc.subjectmultiobjective optimization
dc.subjectGain
dc.titleMultiobjective evolution based fuzzy PI controller design for nonlinear systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución