dc.creatorGuillen-Gonzalez, F
dc.creatorRodriguez-Bellido, MA
dc.creatorRojas-Medar, MA
dc.date2004
dc.date2014-11-14T05:08:04Z
dc.date2015-11-26T16:04:33Z
dc.date2014-11-14T05:08:04Z
dc.date2015-11-26T16:04:33Z
dc.date.accessioned2018-03-28T22:53:39Z
dc.date.available2018-03-28T22:53:39Z
dc.identifierAnnales De L Institut Henri Poincare-analyse Non Lineaire. Gauthier-villars/editions Elsevier, v. 21, n. 6, n. 807, n. 826, 2004.
dc.identifier0294-1449
dc.identifierWOS:000224946500003
dc.identifier10.1016/j.anihpc.2003.11.002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/69028
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/69028
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/69028
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265512
dc.descriptionThe main subject of this work is to study the concept of very weak solution for the hydrostatic Stokes system with mixed boundary conditions (non-smooth Neumann conditions on the rigid surface and homogeneous Dirichlet conditions elsewhere on the boundary). In the Stokes framework, this concept has been studied by Conca [Rev. Mat. Apl. 10 (1989)] imposing non-smooth Dirichlet boundary conditions. In this paper, we introduce the dual problem that turns out to be a hydrostatic Stokes system with non-free divergence condition. First, we obtain strong regularity for this dual problem (which can be viewed as a generalisation of the regularity results for the hydrostatic Stokes system with free divergence condition obtained by Ziane [Appl. Anal. 58 (1995)]). Afterwards, we prove existence and uniqueness of very weak solution for the (primal) problem. As a consequence of this result, the existence of strong solution for the non-stationary hydrostatic Navier-Stokes equations is proved, weakening the hypothesis over the time derivative of the wind stress tensor imposed by Guillen-Gonzalez, Masmoudi and Rodriguez-Bellido [Differential Integral Equations 50 (2001)]. (C) 2004 Elsevier SAS. All rights reserved.
dc.description21
dc.description6
dc.description807
dc.description826
dc.languageen
dc.publisherGauthier-villars/editions Elsevier
dc.publisherParis
dc.publisherFrança
dc.relationAnnales De L Institut Henri Poincare-analyse Non Lineaire
dc.relationAnn. Inst. Henri Poincare-Anal. Non Lineaire
dc.rightsaberto
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjecthydrostatic Stokes equations
dc.subjectmixed boundary conditions
dc.subjectnon-smooth boundary data
dc.subjecttransposition method
dc.subjectPrimitive Equations
dc.titleHydrostatic Stokes equations with non-smooth data for mixed boundary conditions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución