dc.creatorMontagner, VF
dc.creatorPeres, PLD
dc.date2006
dc.dateJUN
dc.date2014-11-14T04:38:35Z
dc.date2015-11-26T16:04:27Z
dc.date2014-11-14T04:38:35Z
dc.date2015-11-26T16:04:27Z
dc.date.accessioned2018-03-28T22:53:33Z
dc.date.available2018-03-28T22:53:33Z
dc.identifierJournal Of Dynamic Systems Measurement And Control-transactions Of The Asme. Asme-amer Soc Mechanical Eng, v. 128, n. 2, n. 365, n. 370, 2006.
dc.identifier0022-0434
dc.identifierWOS:000238665100019
dc.identifier10.1115/1.2194074
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74552
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/74552
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74552
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265485
dc.descriptionThis paper addresses the problem of parameter dependent state feedback control (i.e. gain scheduling) for linear systems with parameters that are assumed to be available (measured or estimated) in real time and are allowed to vary in a compact polytopic set with bounded variation rates. A new sufficient condition given in terms of linear matrix inequalities permits to determine the controller gain as an analytical function of the time-varying parameters and of a set of constant matrices. The closed-loop stability is assured by means of a parameter dependent Lyapunov function. The condition proposed encompasses the well-known quadratic stabilizability condition and allows to impose structural constraints such as decentralization to the feedback gains. Numerical examples illustrate the efficiency of the technique.
dc.description128
dc.description2
dc.description365
dc.description370
dc.languageen
dc.publisherAsme-amer Soc Mechanical Eng
dc.publisherNew York
dc.publisherEUA
dc.relationJournal Of Dynamic Systems Measurement And Control-transactions Of The Asme
dc.relationJ. Dyn. Syst. Meas. Control-Trans. ASME
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectlinear time-varying systems
dc.subjectparameter dependent Lyapunov functions
dc.subjectlinear matrix inequalities
dc.subjectgain scheduling
dc.subjectcontinuous-time systems
dc.subjectDependent Lyapunov Functions
dc.subjectUncertain Systems
dc.subjectStability
dc.subjectControllers
dc.titleState feedback gain scheduling for linear systems with time-varying parameters
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución