dc.creatorKorchmaros, G
dc.creatorTorres, F
dc.date2002
dc.dateJUL
dc.date2014-11-14T02:41:19Z
dc.date2015-11-26T16:04:05Z
dc.date2014-11-14T02:41:19Z
dc.date2015-11-26T16:04:05Z
dc.date.accessioned2018-03-28T22:53:14Z
dc.date.available2018-03-28T22:53:14Z
dc.identifierMathematische Annalen. Springer-verlag, v. 323, n. 3, n. 589, n. 608, 2002.
dc.identifier0025-5831
dc.identifierWOS:000177446800008
dc.identifier10.1007/s002080200316
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68672
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68672
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68672
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265405
dc.descriptionThe upper limit and the first gap in the spectrum of genera of F-q(2)-maximal curves are known, see [34], [16], [35]. In this paper we determine the second gap. Both the first and second gaps are approximately constant times q(2), but this does not hold true for the third gap which is just 1 for q equivalent to 2 (mod 3), while (at most) constant times q for q equivalent to 0 (mod 3). This suggests that the problem of determining the third gap which is the object of current work on F-q(2)-maximal curves could be intricate. Here, we investigate a relevant related problem namely that of characterising those F-q(2)-maximal curves whose genus is equal to the third (or possible the forth) largest value in the spectrum. Our results also provide some new evidence on F-q(2)-maximal curves in connection with Castelnuovo's genus bound, Halphen's theorem, and extremal curves.
dc.description323
dc.description3
dc.description589
dc.description608
dc.languageen
dc.publisherSpringer-verlag
dc.publisherNew York
dc.publisherEUA
dc.relationMathematische Annalen
dc.relationMath. Ann.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectFinite-fields
dc.subjectAlgebraic-curves
dc.subjectHermitian Curve
dc.subjectPoints
dc.titleOn the genus of a maximal curve
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución