dc.creator | Giambruno, A | |
dc.creator | Koshlukov, P | |
dc.date | 2001 | |
dc.date | 2014-11-14T02:30:37Z | |
dc.date | 2015-11-26T16:03:55Z | |
dc.date | 2014-11-14T02:30:37Z | |
dc.date | 2015-11-26T16:03:55Z | |
dc.date.accessioned | 2018-03-28T22:53:07Z | |
dc.date.available | 2018-03-28T22:53:07Z | |
dc.identifier | Israel Journal Of Mathematics. Magnes Press, v. 122, n. 305, n. 316, 2001. | |
dc.identifier | 0021-2172 | |
dc.identifier | WOS:000169028000018 | |
dc.identifier | 10.1007/BF02809905 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68687 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/68687 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/68687 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1265379 | |
dc.description | In this note we exhibit bases of the polynomial identities satisfied by the Grassmann algebras over a field of positive characteristic. This allows us to answer the following question of Kemer: Does the infinite dimensional Grassmann algebra with 1, over an infinite field K of characteristic 3, satisfy all identities of the algebra M-2(K) of all 2 x 2 matrices over K? We give a negative answer to this question. Further, we show that certain finite dimensional Grassmann algebras do give a positive answer to Kemer's question. All this allows us to obtain some information about the identities satisfied by the algebra M-2(K) over an infinite field K of positive odd characteristic, and to conjecture bases of the identities of M-2(K). | |
dc.description | 122 | |
dc.description | 305 | |
dc.description | 316 | |
dc.language | en | |
dc.publisher | Magnes Press | |
dc.publisher | Jerusalem | |
dc.publisher | Israel | |
dc.relation | Israel Journal Of Mathematics | |
dc.relation | Isr. J. Math. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | Nilpotent Lie-algebras | |
dc.subject | Representations | |
dc.title | On the identities of the Grassmann algebras in characteristic p > 0 | |
dc.type | Artículos de revistas | |