dc.creatorde Oliveira, MC
dc.creatorBernussou, J
dc.creatorGeromel, JC
dc.date1999
dc.date46204
dc.date2014-12-02T16:27:47Z
dc.date2015-11-26T16:03:51Z
dc.date2014-12-02T16:27:47Z
dc.date2015-11-26T16:03:51Z
dc.date.accessioned2018-03-28T22:53:04Z
dc.date.available2018-03-28T22:53:04Z
dc.identifierSystems & Control Letters. Elsevier Science Bv, v. 37, n. 4, n. 261, n. 265, 1999.
dc.identifier0167-6911
dc.identifierWOS:000165573200009
dc.identifier10.1016/S0167-6911(99)00035-3
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76167
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76167
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76167
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265364
dc.descriptionA new robust stability condition for uncertain discrete-time systems with convex polytopic uncertainty is given. It enables to check stability using parameter-dependent Lyapunov functions which an derived from LMI conditions. It is shown that this new condition provides better results than the classical quadratic stability. Besides the use of a parameter-dependent Lyapunov function, this condition exhibits a kind of decoupling between the Lyapunov and the system matrices which may be explored for control synthesis purposes. A numerical example illustrates the results. (C) 1999 Elsevier Science B.V. All rights reserved.
dc.description37
dc.description4
dc.description261
dc.description265
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationSystems & Control Letters
dc.relationSyst. Control Lett.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectrobust stability
dc.subjectparameter-dependent Lyapunov functions
dc.subjectlinear matrix inequalities
dc.subjectDependent Lyapunov Functions
dc.subjectSystems
dc.titleA new discrete-time robust stability conditions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución