Artículos de revistas
On the semistability of instanton sheaves over certain projective varieties
Registro en:
Communications In Algebra. Taylor & Francis Inc, v. 36, n. 1, n. 288, n. 298, 2008.
0092-7872
WOS:000252928600023
10.1080/00927870701665503
Autor
Jardim, M
Miro-Roig, RM
Institución
Resumen
We show that instanton bundles of rank r <= 2n - 1, defined as the cohomology of certain linear monads, on an n-dimensional projective variety with cyclic Picard group are semistable in the sense of Mumford-Takemoto. Furthermore, we show that rank r <= n linear bundles with nonzero first Chern class over such varieties are stable. We also show that these bounds are sharp. 36 1 288 298