dc.creatorFigueiredo, DG
dc.creatorUbilla, P
dc.date2008
dc.date42064
dc.date2014-11-13T22:06:09Z
dc.date2015-11-26T16:02:51Z
dc.date2014-11-13T22:06:09Z
dc.date2015-11-26T16:02:51Z
dc.date.accessioned2018-03-28T22:52:15Z
dc.date.available2018-03-28T22:52:15Z
dc.identifierNonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 68, n. 6, n. 1765, n. 1773, 2008.
dc.identifier0362-546X
dc.identifierWOS:000253882100029
dc.identifier10.1016/j.na.2007.01.001
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74798
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/74798
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74798
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265160
dc.descriptionWe discuss the existence of positive solutions of the system -u '' = f (t, u, v, u', v) in (0, 1), -v '' = g(t, u, v, u', v') in (0, 1), u(0) = u(1) = V(0) = V(1) = 0 where the nonlinearities f and g satisfy a superlinearity condition at both 0 and infinity. Our main result is the proof of a priori bounds for the eventual solutions. As an application, we consider the Dirichlet problem in an annulus for systems of semilinear elliptic equations with nonlinearities depending on the gradient as well. As a second application, we consider fourth-order elastic beam equations with dependence also on the derivatives u', u '', u'''. (c) 2007 Elsevier Ltd. All rights reserved.
dc.description68
dc.description6
dc.description1765
dc.description1773
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relationNonlinear Anal.-Theory Methods Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectelliptic systems
dc.subjectannular domains
dc.subjectpositive radial solutions
dc.subjectfixed points
dc.subjecttopological degree
dc.subjectPositive Radial Solutions
dc.subjectElliptic-systems
dc.subjectMultiplicity
dc.subjectExistence
dc.subjectEquations
dc.subjectParameters
dc.subjectAnnulus
dc.titleSuperlinear systems of second-order ODE's
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución