dc.creatordo Val, JBR
dc.creatorAndrade, MG
dc.date2002
dc.dateJUL
dc.date2014-11-13T20:47:49Z
dc.date2015-11-26T16:02:34Z
dc.date2014-11-13T20:47:49Z
dc.date2015-11-26T16:02:34Z
dc.date.accessioned2018-03-28T22:51:59Z
dc.date.available2018-03-28T22:51:59Z
dc.identifierApplied Numerical Mathematics. Elsevier Science Bv, v. 41, n. 4, n. 459, n. 479, 2002.
dc.identifier0168-9274
dc.identifierWOS:000175995100003
dc.identifier10.1016/S0168-9274(01)00127-1
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67653
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/67653
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/67653
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265094
dc.descriptionA numerical treatment for the boundary value, problem involving the Helmholtz equation Deltau - lambda(2)u = f is presented. The method is a five-point formula with an improved accuracy when compared with the usual finite difference method. Besides, the accuracy evaluation is provided in analytical form and the classical difference scheme is seen as a truncated series approximation to the present method. The idea comes from approximations to analytical solutions to the Dirichlet problem inside a ball, based on the Green identity. The homogeneous and the nonhomogeneous parts are evaluated in separate expressions, and the precision error yielded is of order O(h(2)). Some numerical examples and comparisons are presented. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
dc.description41
dc.description4
dc.description459
dc.description479
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationApplied Numerical Mathematics
dc.relationAppl. Numer. Math.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectnumerical approximation
dc.subjectfinite difference method
dc.subjectpartial differential equation
dc.subjectHelmholtz equation
dc.titleOn mean value solutions for the Helmholtz equation on square grids
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución