dc.creatorFerrari, PA
dc.creatorGarcia, NL
dc.date1998
dc.dateDEC
dc.date2014-12-02T16:27:43Z
dc.date2015-11-26T16:02:06Z
dc.date2014-12-02T16:27:43Z
dc.date2015-11-26T16:02:06Z
dc.date.accessioned2018-03-28T22:51:33Z
dc.date.available2018-03-28T22:51:33Z
dc.identifierJournal Of Applied Probability. Applied Probability Trust, v. 35, n. 4, n. 963, n. 975, 1998.
dc.identifier0021-9002
dc.identifierWOS:000078835500018
dc.identifier10.1239/jap/1032438391
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81750
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81750
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81750
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264987
dc.descriptionWe study one-dimensional continuous loss networks with length distribution G and cable capacity C. We prove that the unique stationary distribution eta(L) of the network for which the restriction on the number of calls to be less than C is imposed only in the segment [-L, L] is the same as the distribution of a stationary M/G/infinity queue conditioned to be less than C in the time interval [-L, L]. For distributions G which are of phase type (= absorbing times of finite state Markov processes) we show that the limit as L --> infinity of eta(L) exists and is unique. The limiting distribution turns out to be invariant for the infinite loss network. This was conjectured by Kelly (1991).
dc.description35
dc.description4
dc.description963
dc.description975
dc.languageen
dc.publisherApplied Probability Trust
dc.publisherSheffield
dc.publisherInglaterra
dc.relationJournal Of Applied Probability
dc.relationJ. Appl. Probab.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectloss networks
dc.subjectPoisson process
dc.subjectprojection method
dc.subjectstationary distribution
dc.subjectquasi-stationary distributions
dc.subjectDeath Processes
dc.subjectBirth
dc.titleOne-dimensional loss networks and conditioned M/G/infinity queues
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución