dc.creatorCoral D.F.
dc.creatorMendoza Zelis P.
dc.creatorDe Sousa M.E.
dc.creatorMuraca D.
dc.creatorLassalle V.
dc.creatorNicolas P.
dc.creatorFerreira M.L.
dc.creatorFernandez Van Raap M.B.
dc.date2014
dc.date2015-06-25T17:51:31Z
dc.date2015-11-26T15:42:24Z
dc.date2015-06-25T17:51:31Z
dc.date2015-11-26T15:42:24Z
dc.date.accessioned2018-03-28T22:50:56Z
dc.date.available2018-03-28T22:50:56Z
dc.identifier
dc.identifierJournal Of Applied Physics. American Institute Of Physics Inc., v. 115, n. 4, p. - , 2014.
dc.identifier218979
dc.identifier10.1063/1.4862647
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903159429&partnerID=40&md5=6715a39767d9d2737fa5e615604f099a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86086
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86086
dc.identifier2-s2.0-84903159429
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264839
dc.descriptionIn this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (∼10-10s and 10-4s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i.e., improving the heating efficiency of the nanoparticles for magnetic fluid hyperthermia.
dc.description115
dc.description4
dc.description
dc.description
dc.descriptionGilchrist, N.R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B., Selective inductive heating of Limph (1957) Ann. Surg., 146, p. 596
dc.descriptionJordan, A., Wust, P., Scholz, R., Tesche, B., Fähling, H., Mitrovics, T., Vogl, T., Felix, R., Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro (1996) Int. J. Hyperthermia., 12 (6), pp. 705-722
dc.descriptionHergt, R., Hiergeist, R., Zeisberger, M., Schüler, D., Heyen, U., Hilger, I., Kaiser, W.A., Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy (2005) J. Magn. Magn. Mater., 293, pp. 80-86
dc.descriptionAvdeev, M.V., Mucha, B., Lamszus, K., Ladislau, V., Garamus, V.M., Feoktystov, A.V., Marinica, O., Willumeit, R., Structure and in vitro biological testing of water-based ferrofluids stabilized by monocarboxylic acids (2010) Langmuir, 26 (11), pp. 8503-8509
dc.descriptionRosensweig, R.E., (1985) Ferrohydrodynamics, , Cambridge University Press, Cambridge, England
dc.descriptionBrullot, W., Reddy, N.K., Wouters, J., Valev, V.K., Goderis, B., Vermant, J., Verbiest, T., Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles (2012) J. Magn. Magn. Mater., 324, pp. 1919-1925
dc.descriptionLuong, T.T., Ha, T.P., Tran, L.D., Hung Do, M., Thu Mai, T., Hong Pham, N., Bich Thi Phan, H., Nguyen, P.X., Design of carboxylated Fe3O4/poly(styreneco-acrylic acid) ferrofluids with highly efficient magnetic heating effect (2011) Colloids Surf. A: Physicochem. Eng. Aspects, 384, pp. 23-30
dc.descriptionLaurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M., Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles (2011) Adv. Colloid Interface Sci., 166, pp. 8-23
dc.descriptionJeun, M., Bae, S., Tomitaka, A., Takemura, Y., Ho Park, K., Ha Paek, S., Chung, K.W., Effects of particle dipole interaction on the ac magnetically induced heating characteristics of ferrite nanoparticles for hyperthermia (2009) Appl. Phys. Lett., 95, p. 082501
dc.descriptionUrtizberea, A., Natividad, E., Arizaga, A., Castro, M., Mediano, A., Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations (2010) J. Phys. Chem. C, 114 (11), pp. 4916-4922
dc.descriptionSerantes, D., Baldomir, D., Martinez-Boubeta, C., Simeonidis, K., Angelakeris, M., Natividad, E., Castro, M., Martínez, B., Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles (2010) J. Appl. Phys., 108, p. 073918
dc.descriptionMehdaoui, B., Tan, R.P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B., Respaud, M., Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results (2013) Phys. Rev. B, 87, p. 174419
dc.descriptionDe Sousa María, M.E., Fernández Van Raap, M.B., Rivas, P.C., Mendoza Zélis, P., Girardin, P., Pasquevich, G., Alessandrini, J., Sánchez, F.H., Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia (2013) J. Phys. Chem. C, 117 (10), pp. 5436-5445
dc.descriptionRosensweig, R.E., Heating magnetic fluid with alternating magnetic field (2002) J. Magn. Magn. Mater., 252, pp. 370-374
dc.descriptionCarrey, J., Mehdaoui, B., Respaud, M., Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization (2011) J. Appl. Phys., 109, p. 083921
dc.description(1991) Rare Earth Magnetism: Structures and Excitations, , edited by J. Jensen and A. R. Mackintosh Clarendon Press, Oxford, Chap. 3
dc.descriptionStoner, E.C., Wohlfarth, E.P., A Mechanism of magnetic hysteresis in heterogeneous alloys (1948) Philos. Trans. Roy. Soc. A, 240, pp. 599-642
dc.descriptionDormann, J.L., Bessais, L., Fiorani, D., A dynamic study of small interacting particles: Superparamagnetic model and spin-glass laws (1988) J. Phys. C: Solid State Phys., 21, p. 2015
dc.descriptionLima, E., Jr., Torres, T.E., Rossi, L.M., Rechenberg, H.R., Berquo, T.S., Ibarra, A., Marquina, C., Goya, G.F., Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles (2013) J. Nanopart Res., 15, p. 1654
dc.descriptionMendoza Zélis, P., Pasquevich, G.A., Stewart, S.J., Fernández Van Raap, M.B., Aphesteguy, J., Bruvera, I.J., Laborde, C., Sánchez, F.H., Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications (2013) J. Phys. D: Appl. Phys., 46, p. 125006
dc.descriptionFortin, J.P., Gazeau, F., Wilhelm, C., Intracellular heating of living cells through Neél relaxation of magnetic nanoparticles (2008) Eur. Biophys. J., 37, pp. 223-228
dc.descriptionHergt, R., Dutz, S., Roder, M., Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia (2008) J. Phys.: Condens. Matter, 20, p. 385214
dc.descriptionSalas, G., Casado, C., Teran, F.J., Miranda, R., Serna, C.J., Puerto Morales, M., Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications (2012) J. Mater. Chem., 22, p. 21065
dc.descriptionQu, J., Liu, G., Wang, Y., Hong, R., Preparation of Fe3O4- chitosan nanoparticles used for hyperthermia (2010) Adv. Powder Technol., 21, pp. 461-467
dc.descriptionBelessi, V., Zboril, R., Tucek, J., Mashlan, M., Tzitzios, V., Petridis, D., Ferrofluids from magnetic-Chitosan hybrids (2008) Chem. Mater., 20, pp. 3298-3305
dc.descriptionGaihre, B., Seob Khil, M., Rae Lee, D., Yong Kim, H., Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study (2009) Int. J. Pharam., 365, pp. 180-189
dc.descriptionLassalle, V., Ferreira, M., Nano and microspheres based on Polylactide (PLA) polymers and copolymers: An overview of their characteristics as a function of the obtention method (2007) Macromol. Biosci., 7, pp. 767-783
dc.descriptionNicolás, P., Saleta, M., Troiani, H., Zysler, R., Lassalle, V., Ferreira, M.L., Preparation of iron oxides nanoparticles stabilized with biomolecules: Experimental and mechanism issues (2013) Acta Biomater., 9 (1), pp. 4754-4762
dc.descriptionLi, P., Zhu, A.M., Liu, Q.L., Zhang, Q.G., Fe3O4/poly(N-isopropylacrylamide)/ chitosan composite microspheres with multiresponsive properties (2008) Ind. Eng. Chem. Res., 47, pp. 7700-7706
dc.descriptionFreltoft, T., Kjems, J.K., Sinha, S.K., Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering (1986) Phys. Rev. B, 33, pp. 269-275
dc.descriptionChen, S., Texeira, J., Structure and fractal dimension of protein-detergent complexes (1986) Phys. Rev. Lett., 57, pp. 2583-2586
dc.descriptionFernández Van Raap, M.B., Mendoza Zélis, P., Coral, D.F., Torres, T.E., Marquina, C., Goya, G.F., Sánchez, F.H., Self organization in oleic acid coated CoFe2O4colloids: A SAXS study (2012) J. Nanoparticle Res., 14 (9), pp. 1072-1075
dc.descriptionBeaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering (1995) J. Appl. Cryst., 28, pp. 717-728
dc.descriptionMicha, J.S., Dieny, B., Régnard, J.R., Jacquot, J.F., Sort, J., Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO2 discontinuous multilayers (2004) J. Magn. Magn. Mater., 272-276, pp. E967-E968
dc.descriptionAllia, P., Coisson, M., Tiberto, P., Vinai, F., Knobel, M., Novak, M.A., Nunes, W.C., Granular Cu-Co alloys as interacting superparamagnets (2001) Phys. Rev. B, 64 (14), p. 144420
dc.descriptionNunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., Temperature dependence of the coercive field in single-domain particle systems (2004) Phys. Rev. B, 70, p. 014419
dc.descriptionGilmore, K., Idzerda, Y.U., Klem, M.T., Allen, M., Douglas, T., Young, M., Surface contribution to the anisotropy energy of spherical magnetite particles (2005) J. Appl. Phys., 97, p. 10B301
dc.descriptionDormann, J.L., Fiorani, D., Tronc, E., On the models for interparticle interactions in nanoparticle assemblies: Comparison with experimental results (1999) J. Magn. Magn. Mater., 202, pp. 251-267
dc.descriptionHugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Bazzi, R., Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia (2012) J. Phys. Chem. C, 116 (29), pp. 15702-15712
dc.descriptionDormann, J.L., Fiorani, D., Tronc, E., Magnetic relaxation in fine-particle systems (2007) Advances in Chemical Physics, 98, p. 339. , edited by I. Prigogine and S. A. Rice John Wiley & Sons, Inc., Hoboken, NJ, USA, Chap. 4
dc.descriptionVallejo-Fernandez, G., Whear, O., Roca, A.G., Hussain, S., Timmis, J., Patel, V., O'Grady, K., Mechanisms of hyperthermia in magnetic nanoparticles (2013) J. Phys. D: Appl. Phys., 46, p. 312001
dc.languageen
dc.publisherAmerican Institute of Physics Inc.
dc.relationJournal of Applied Physics
dc.rightsaberto
dc.sourceScopus
dc.titleQuasi-static Magnetic Measurements To Predict Specific Absorption Rates In Magnetic Fluid Hyperthermia Experiments
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución