dc.creatorLai X.
dc.creatorRoberts K.J.
dc.creatorBedzyk M.J.
dc.creatorLyman P.F.
dc.creatorCardoso L.P.
dc.creatorSasaki J.M.
dc.date2005
dc.date2015-06-26T14:07:50Z
dc.date2015-11-26T15:42:08Z
dc.date2015-06-26T14:07:50Z
dc.date2015-11-26T15:42:08Z
dc.date.accessioned2018-03-28T22:50:42Z
dc.date.available2018-03-28T22:50:42Z
dc.identifier
dc.identifierChemistry Of Materials. , v. 17, n. 16, p. 4053 - 4061, 2005.
dc.identifier8974756
dc.identifier10.1021/cm0478881
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-23844463548&partnerID=40&md5=aa69e2a9b90d5e4b4c49f2c6b97d5adc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93443
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93443
dc.identifier2-s2.0-23844463548
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264783
dc.descriptionThe local atomic structure of habit-modifying transition metal cations within the crystal lattice of potassium dihydrogen phosphate (KDP) is investigated using X-ray absorption spectroscopy (XAS) and X-ray standing wave (XSW) spectroscopy, together with molecular modeling. XAS reveals the transition metal cations to be structurally incorporated into the crystal lattice as an ionic complex that is octahedrally coordinated to two phosphate groups and four water molecules. The position of transition metal cation, as determined by XSW, is consistent with its location at an interstitial lattice site, with a coherent position 0.66 with respect to the {200} crystal lattice planes. The structural model suggested that the transition metal complex mimics the surface structure of KDP prismatic {100} face, hence facilitating its adsorption on this face. Charge compensation associated with the impurity incorporation during crystal growth is effected via the hydrated impurity complex displacing one bonding proton that binds two phosphate groups together with two potassium ions within the crystal structure to maintain the system charge balance. The resulting model is consistent with the XAS and XSW results as well as earlier work. © 2005 American Chemical Society.
dc.description17
dc.description16
dc.description4053
dc.description4061
dc.descriptionBarrett, N., Lamble, G.M., Roberts, K.J., Sherwood, J.N., Greaves, G.N., Davey, R.J., Oldman, R.J., Jones, D., (1989) J. Cryst. Growth, 94, p. 689
dc.descriptionCunningham, D.A.H., Hammond, R.B., Lai, X., Roberts, K., (1995) J. Chem. Mater., 7 (9), p. 1690
dc.descriptionKolb, H., Corner, J.J., (1945) J. Am. Chem. Soc., 67, p. 894
dc.descriptionDe Yoreo, J.J., Burnham, A.K., Whitman, P.K., (2002) Int. Mater. Rev., 47 (3), pp. 113-152
dc.descriptionJaffe, H., Kjellgren, B.R.F., (1951) Faraday Discuss., Cryst. Growth, 5, p. 319
dc.descriptionMullin, J.W., Amatavivadhana, A., Chakraborty, M., (1970) J. Appl. Chem., 20, p. 153
dc.descriptionDavey, R.J., Mullin, J.W., (1974) J. Cryst. Growth, 23, p. 89
dc.descriptionDavey, R.J., Mullin, J.W., (1974) J. Cryst. Growth, 26, p. 45
dc.descriptionDavey, R.J., Mullin, J.W., (1976) Kristall. Techn., 11 (3), p. 229
dc.descriptionFontcuberta, J., Rofriguez, R., Teheda, J., (1978) J. Cryst. Growth, 44, p. 593
dc.descriptionMullin, J.W., (1992) Crystallization, 3rd Ed., , Butterworth-Heinemann: Wobum, MA
dc.descriptionBravo, D., Lopez, F.J., Dieguez, E., Aguilar, M., Cabrera, J.M., (1989) J. Phys.: Condensed Matter, 1, p. 6145
dc.descriptionBravo, D., Bottcher, R., Lopez, F.J., (1992) J. Phys.: Condensed Matter, 4, p. 2297
dc.descriptionWang, W., Chao, Y., Zhang, Y., Wang, Z., (1987) Chin. Phys. Lett., 4, p. 333
dc.descriptionLai, X., Roberts, K.J., Avanci, L.H., Cardoso, L.P., Sasaki, J.M., (2003) J. Appl. Crystallogr., 36, p. 1230
dc.descriptionDe Vries, S.A., Goedtkindt, P., Huisman, W.J., (1999) J. Cryst. Growth, 205 (1-2), p. 202
dc.descriptionZizic, B., Davey, R.J., Zegarac, T., Pastor, T., Ristic, R., Napijalo, M.M., (1980) J. Cryst. Growth, 49, p. 675
dc.descriptionArmstrong, D.R., Cunningham, D.A.H., Roberts, K.J., Sherwood, J.N., (1991) X-ray Absorption Fine Structure, p. 435. , Hasnain, S., Ed.
dc.descriptionEllis Horwood: Chichester
dc.descriptionLai, X., (1998) The Molecular Scale Mechanism Involved in the Habit Modification of KDP by Transition Metal Cations, , (Ph.D. Thesis), University of Strathclyde, Glasgow, UK
dc.descriptionBatterman, B.W., (1969) Phys. Rev. Lett., 22, p. 703
dc.descriptionGolovchenko, J.A., Batterman, B.W., Brown, W.L., (1974) Phys. Rev., B10, p. 4239
dc.descriptionCunningham, D.A.H., Armstrong, D.R., Clydesdale, G., Roberts, K.J., (1993) Faraday Discuss., 95, p. 347
dc.descriptionCerius 2, Computational Instruments for Materials Research, , Molecular Simulations International, Cambridge, UK
dc.descriptionRappe, A.K., (1992) J. Am. Chem. Soc., 114. , (a) 10024 and (b) 10046
dc.descriptionByteva, I.M., (1968) J. Ctyst. Growth, 58, p. 26
dc.descriptionGreenwood, N.N., Earnshaw, A., (1984) Chemistry of the Elements, , Pergamon Press: Elmsford, NY
dc.descriptionMatijevic, E., Lindsay, A.D., Kratohril, S., Jones, M.F., Larson, R.I., Cayey, N.W., (1971) J. Colloid Interface Sci., 36, p. 273
dc.descriptionHolroyd, Salmon, J.E., (1956) J. Chem. Soc., p. 269
dc.descriptionRedfern, J.P., Salmon, J.E., (1961) J. Chem. Soc., p. 291
dc.descriptionBuckley, H.E., (1934) Zeit. Kristallogr., 88, p. 248
dc.descriptionWhetstone, J., (1954) Discuss Faraday Soc., 5, p. 132
dc.languageen
dc.publisher
dc.relationChemistry of Materials
dc.rightsfechado
dc.sourceScopus
dc.titleStructure Of Habit-modifying Trivalent Transition Metal Cations (mn 3+, Cr 3+) In Nearly Perfect Single Crystals Of Potassium Dihydrogen Phosphate As Examined By X-ray Standing Waves, X-ray Absorption Spectroscopy, And Molecular Modeling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución