dc.creatorYano C.L.
dc.creatorMarcondes M.C.C.G.
dc.date2005
dc.date2015-06-26T14:07:48Z
dc.date2015-11-26T15:42:08Z
dc.date2015-06-26T14:07:48Z
dc.date2015-11-26T15:42:08Z
dc.date.accessioned2018-03-28T22:50:41Z
dc.date.available2018-03-28T22:50:41Z
dc.identifier
dc.identifierFree Radical Biology And Medicine. , v. 39, n. 10, p. 1378 - 1384, 2005.
dc.identifier8915849
dc.identifier10.1016/j.freeradbiomed.2005.07.001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-27544490827&partnerID=40&md5=7a2a2c977cb7f15f38107664692e8023
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93435
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93435
dc.identifier2-s2.0-27544490827
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264782
dc.descriptionThe effects of cadmium chloride (CdCl2) on oxidative stress in the skeletal muscle cell line C2C12 were investigated. Myoblast cells that differentiated into myotubes were treated with CdCl 2 (1, 3, 5, 7.5, 10, and 12.5 μM) for 24, 48, and 72 h. Subsequent assay of cell homogenates for MTT (3-(4,5-dimethylthiozol-2-yl)-2,5- diphenyltetrazolium bromide) reduction, neutral red uptake and nucleic acid content showed that cadmium was toxic to C2C12 cells in a concentration-dependent manner. Glutathione-S-transferase activity (nmol μg of protein-1 min-1) was increased with 1 and 3 μM CdCl2 (36.9 ± 5.6 and 32.1 ± 6.0, respectively) compared to control cells (21.8 ± 1.5), but decreased at higher concentrations (7.5 μM = 15.9 ± 3.3, 10 μM = 15.9 ± 4.6, and 12.5 μM = 10.5 ± 2.8). An increase in malondialdehyde content (nmol μg of protein-1), especially at high CdCl2 concentrations (control = 7.3 ± 0.5; CdCl2: 7.5 μM = 11.2 ± 3.1, 10 μM = 14.6 ± 3.8, and 12.5 μM = 20.5 ± 6.5) indicated that there was enhanced lipid peroxidation. Light and scanning electron microscopy showed that there was a concentration-dependent loss of adherent cells and the formation of vesicles indicative of cell death. These results indicated that CdCl2 increased oxidative stress in C 2C12 cells, and this stress probably compromised cell adhesion and the cellular antioxidant defense mechanisms.
dc.description39
dc.description10
dc.description1378
dc.description1384
dc.descriptionPeters, J.M., Thomas, D., Falk, H., Oberdorster, G., Smith, T.J., Contribution of metals to respiratory cancer (1986) Environ. Health Perspect., 70, pp. 71-83
dc.descriptionNordberg Herber, R.R.M.G.F., Allesio, L., (1992) Cadmium in the Human Environment. Toxicity and Carcinogenicity, , IARC Lyon, France
dc.descriptionCadmium. IPCS (1992) Environ. Health Criteria, 134. , WHO (World Health Organization)
dc.descriptionSaffron, L., Australia cuts cadmium in food (2001) Environ. Health Perspect., 109, p. 158
dc.descriptionWaalkes, M., Rehm, S., Cherian, G., Repeated cadmium exposures enhance the malignant progression of ensuring tumors in rats (2000) Toxicol. Sci., 54, pp. 110-120
dc.descriptionWaalkes, M.P., Rehn, S., Carcinogenicity of oral cadmium in the male Wistar (WF/NCr) rat: Effect of chronic dietary zinc deficiency (1992) Fundam. Appl. Toxicol., 19, pp. 512-520
dc.descriptionWaalkes, M.P., Rehn, S., Perantoni, A.O., Coogan, T.P., Cadmium exposure in rats and tumors of the prostate (1992) IARC Sci. Publ., 118, pp. 391-400
dc.descriptionStayner, L., Smith, R., Thun, M., Schnorr, T., Lemen, R.A., A quantitative assessment of lung cancer risk and occupational cadmium exposure (1992) IARC Sci. Publ., 118, pp. 447-455
dc.descriptionFang, M.-Z., Kim, D.-E., Lee, H.-W., Cho, M.-H., Improvement of in vitro two-stage transformation assay and determination of the promotional effect of cadmium (2001) Toxicol. in Vitro, 15, pp. 225-231
dc.descriptionPearson, C.A., Prozialech, W.C., E-cadherin, β-catenin and cadmium carcinogenesis (2001) Med. Hypoth., 56, pp. 573-581
dc.descriptionProzialech, W.C., Niewnhuis, R.J., Cadmium disrupts Ca+2-dependent cell-cell junctions and alters the pattern of E-cadherin immunofluorescence in LLC-PK1 cells (1991) Biochem. Biophys. Res. Commun., 181, pp. 515-526
dc.descriptionOlabarrieta, I., L'Azou, B., Yuric, S., Cambar, J., Cajaraville, M.P., In vitro effects of cadmium on two different animal cell models (2001) Toxicol. in Vitro, 15, pp. 511-517
dc.descriptionWaalkes, M.P., Coogan, T.P., Barter, R.A., Toxicological principles of metal carcinogenesis with special emphasis on cadmium (1992) Crit. Rev. Toxicol., 22, pp. 175-201
dc.descriptionWaalkes, M.P., Cadmium carcinogenesis in review (1999) J. Inorg. Biochem., 79, pp. 241-244
dc.descriptionYuan, C., Kadiiska, M., Achanzar, W.E., Mason, R.P., Waalkes, M.P., Possible role of caspase-3 inhibition in cadmium-induced blockage of apoptosis (2000) Toxicol. Appl. Pharmacol., 164, pp. 321-329
dc.descriptionMisra, R.R., Smith, G.T., Waalkes, M.P., Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines (1998) Toxicology, 126, pp. 103-114
dc.descriptionHart, B.A., Lee, C.H., Shukla, G.S., Shukla, A., Osier, M., Eneman, J.D., Chiu, J.-F., Characterization of cadmium-induced apoptosis in rat lung epithelial cells: Evidence for the participation of oxidant stress (1999) Toxicology, 133, pp. 43-58
dc.descriptionProzialeck, W.C., Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells (2000) Toxicol. Appl. Pharmacol., 164, pp. 231-249
dc.descriptionProzialeck, W.C., Lamar, P.C., Lynch, S.M., Cadmium alters the localization of N-cadherin, E-cadherin, and β-catenin in the proximal tubule epithelium (2003) Toxicol. Appl. Pharmacol., 189, pp. 180-195
dc.descriptionAustin, L., De Niesse, M., McGregor, A., Arthur, H., Gurushinghe, A., Gould, M.K., Potential oxyradical damage and energy status in individual muscle fibres from degenerating muscle diseases (1992) Neuromusc. Dis., 2, pp. 27-33
dc.descriptionFranco, A.A., Odom, R.S., Rando, T.A., Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle (1999) Free Radic. Biol. Med., 27, pp. 1122-1132
dc.descriptionLopez, E., Figueroa, S., Oset-Gasque, M.J., Gonzalez, M.P., Apoptosis and necrosis: Two distinct events induced by cadmium in cortical neurons in culture (2003) Br. J. Pharmacol., 138, pp. 901-911
dc.descriptionDelraso, N.J., Foy, B.D., Gearhart, J.M., Frazier, J.M., Cadmium uptake kinetics in rat hepatocytes: Correction for albumin binding (2003) Toxicol. Sci., 72, pp. 19-30
dc.descriptionSarkar, S., Yadav, P., Trivedi, R., Bansal, A.K., Bhatnagar, D., Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues (1995) J. Trace Elem. Med. Biol., 9, pp. 144-149
dc.descriptionSeidki, A., Lekouch, N., Gamon, S., Pineau, A., Toxic and essential trace metals in muscle, liver and kidney of bovines from a polluted area of Morocco (2003) Sci. Total Environ., 317, pp. 201-205
dc.descriptionFujiwara, Y., Tsumura, N., Yamamoto, C., Kaji, T., Differential effects of cadmium on proteoglycan synthesis of arterial smooth muscle cells: Increase in small dermatan sulfate proteoglycans, biglycan and decorin, in the extracellular matrix at low cell density (2002) Toxicology, 170, pp. 89-101
dc.descriptionBag, S., Vora, T., Ghatak, R., Nilufer, I., D'Mello, D., Pereira, L., Pereira, J., Rao, V., A study of toxic effects of heavy metal contaminants from sludge-supplemented diets on male Wistar rats (1999) Ecotoxicol. Environ. Saf., 42, pp. 163-170
dc.descriptionCao, Z., Li, Y., Chemical induction of cellular antioxidants affords marked protection against oxidative injury in vascular smooth muscle cells (2002) Biochem. Biophys. Res. Commun., 292, pp. 50-57
dc.descriptionShimizu, M., Hochadel, J.F., Waalkes, M.P., Effects of glutathione depletion on cadmium-induced metallothionein synthesis, cytotoxicity, and proto-oncogene expression in cultured rat myoblasts (1997) J. Toxicol. Environ. Health, 51, pp. 609-621
dc.descriptionRagusa, R.J., Chow, C.K., Porter, J.D., Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy (1993) Neuromusc. Disord., 7, pp. 379-386
dc.descriptionGomes-Marcondes, M.C., Tisdale, M.J., Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress (2002) Cancer Lett., 180, pp. 69-74
dc.descriptionMossman, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Meth., 65, pp. 55-63
dc.descriptionBorenfreud, G., Puerner, J.A., Toxicity determined in vitro by morphological alternatives and neutral red absorption (1995) Toxicol. Lett., 24, pp. 110-124
dc.descriptionCinti, M.R., De Angelis, I., Fortunati, E., Reggiani, D., Bianchi, V.V., Tiozzo, R., Zucco, F., Choice and standardisation of test protocols in cytotoxicology: A multicenter approach (1991) Toxicol. in Vitro, 5, pp. 119-125
dc.descriptionHabig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferases. the first step in mercapturic acid formation (1974) J. Biol. Chem., 249, pp. 7130-7139
dc.descriptionLowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.L., Protein measurement with Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
dc.descriptionGad, S.C., Weil, C.S., Statistics for toxicologists (1994) Principles and Methods of Toxicology, pp. 221-274. , H. Wallace Raven Press New York
dc.descriptionHartwig, A., Schwerdtle, T., Interactions by carcinogenic metal compounds with DNA repair processes: Toxicological implications (2002) Toxicol. Lett., 127, pp. 47-54
dc.descriptionHatcher, E.L., Chen, Y., Kang, J.Y., Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities (1995) Free Radic. Biol. Med., 19, pp. 805-812
dc.descriptionSzuster-Ciesielska, A., Stachura, A., Slotwinska, M., Kaminska, T., Sniezko, R., Paduch, R., Abramczyk, D., Kandefer-Szerszen, M., The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures (1999) Toxicology, 145, pp. 159-171
dc.descriptionStohs, S.J., Bagchi, D., Oxidative mechanisms in the toxicity of metal ions (1995) Free Radic. Biol. Med., 18, pp. 321-348
dc.descriptionBagchi, D., Bagchi, M., Tang, L., Stohs, S.J., Comparative in vitro and in vivo protein kinase C activation by selected pesticides and transition metal salts (1997) Toxicol. Lett., 91, pp. 31-37
dc.descriptionNigan, D., Shukla, G.S., Agarwal, A.K., Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney (1999) Toxicol. Lett., 106, pp. 151-157
dc.descriptionHassoun, E.A., Stohs, S.J., Cadmium induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A1 cell cultures (1996) Toxicology, 112, pp. 219-226
dc.descriptionHemminki, K., Koskinen, M., Rajaniemi, H., Zhao, C., DNA adducts, mutations, and cancer 2000 (2000) Regul. Toxicol. Pharmacol., 32, pp. 264-275
dc.descriptionManca, D., Ricard, A.C., Trottier, B., Chevalier, G., Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride (1991) Toxicology, 67, pp. 303-323
dc.descriptionGaubin, Y., Vaissade, R., Croute, F., Beau, B., Soleilhavoup, J.-P., Murat, J.-C., Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line (2000) Biochim. Biophys. Acta, 1495, pp. 4-13
dc.descriptionMehlen, P., Hickey, E., Weber, L.A., Arrigo, A.P., Large unphosphorylated aggregates as the active form of Hsp27 which controls intracellular reactive oxygen species and gluthatione levels and generates a protection against TNFα in NIH-3T3-ras cells (1997) Biochem. Biophys. Res. Commun., 241, pp. 187-192
dc.descriptionEscobedo, J., Pucci, A.M., Koh, T., HSP25 protects skeletal muscle cells against oxidative stress (2004) Free Radic. Biol. Med., 37, pp. 1455-1462
dc.descriptionYang, J.-L., Chao, J.-I., Lin, J.-G., Reactive oxygen species may participate in mutagenicity and mutational spectrum of cadmium in Chinese hamster ovary-K1 cells (1996) Chem. Res. Toxicol., 9, pp. 1360-1367
dc.descriptionHussain, T., Shukla, G.S., Chandra, S.V., Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: In vivo and in vitro studies (1987) Pharmacol. Toxicol., 60, pp. 355-358
dc.descriptionShaikh, Z.A., Vu, T.T., Zaman, K., Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants (1998) Toxicol. Appl. Pharmacol., 154, pp. 256-263
dc.descriptionProzialeck, W.C., Grunwald, G.B., Markus Dey, P., Reuhl, K.R., Parrish, A.R., Cadherins and NCAM as potential targets in metal toxicity (2002) Toxicol. Appl. Pharmacol., 182, pp. 255-265
dc.descriptionAoki, A., Hoffer, A.P., Reexamination of the lesions in rat testis caused by cadmium (1978) Biol. Reprod., 18, pp. 579-591
dc.descriptionHew, K.W., Heath, G.L., Jiwa, A.H., Welsh, M.J., Cadmium in vivo causes disruption of tight junction-associated microfilaments in rat Sertoli cells (1993) Biol. Reprod., 49, pp. 840-849
dc.languageen
dc.publisher
dc.relationFree Radical Biology and Medicine
dc.rightsfechado
dc.sourceScopus
dc.titleCadmium Chloride-induced Oxidative Stress In Skeletal Muscle Cells In Vitro
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución