dc.creator | Takahata Y. | |
dc.date | 2005 | |
dc.date | 2015-06-26T14:07:49Z | |
dc.date | 2015-11-26T15:42:04Z | |
dc.date | 2015-06-26T14:07:49Z | |
dc.date | 2015-11-26T15:42:04Z | |
dc.date.accessioned | 2018-03-28T22:50:38Z | |
dc.date.available | 2018-03-28T22:50:38Z | |
dc.identifier | | |
dc.identifier | Journal Of Physical Organic Chemistry. , v. 18, n. 2, p. 187 - 191, 2005. | |
dc.identifier | 8943230 | |
dc.identifier | 10.1002/poc.859 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-12444343069&partnerID=40&md5=f01b05f2c874564a92277c5bebef117c | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/93436 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/93436 | |
dc.identifier | 2-s2.0-12444343069 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1264770 | |
dc.description | For monosubstituted benzenes (Ph-Z), Linderberg et al. demonstrated the validity of the equation ΔCEBE ≈ κσ, where ΔCEBE is the difference between the core-electron binding energies (CEBE) of a specific carbon in monosubstituted benzene derivatives (Ph-Z) and that of unsubstituted benzene (Ph-H), k is related lo the reaction constant and σ is the experimental Hammett sigma constant CEBEs of carbon atoms for a series of Ph-Z were calculated using density functional theory (DFT) with the scheme ΔEks(PW86-PW91)/TZP+ Crel,//HF/6-31G *. An average absolute deviation of 0.15 eV was obtained with respect to observed values. A linear regression analysis of the form y = A + BX of a plot of, for instance, Hammett ωρ-constants against calculated ΔCEBEs (in eV) at para-carbon for n =11 produced a value of A = -0.1310 and B= 1.056 with a correlation coefficient R = 0.983, a standard deviation of 0.099 and a p-value <0.0001. Copyright ©; 2004 John Wiley & Sons, Ltd. | |
dc.description | 18 | |
dc.description | 2 | |
dc.description | 187 | |
dc.description | 191 | |
dc.description | Lingderberg, B., Svensson, S., Malmquist, P.A., Basilier, E., Gelius, U., Siegbahn, K., (1976) Chem. Phys. Lett., 40, pp. 175-179 | |
dc.description | Hammett, L.P., (1937) J. Am. Chem. Soc., 59, pp. 96-104 | |
dc.description | Takahata, Y., Chong, D.P., (2003) J. Electron Spectrosc. Relat. Phenom., 133, pp. 69-76 | |
dc.description | Perdew, J.P., Wang, Y., (1986) Phys. Rev. B, 33, pp. 8800-8824 | |
dc.description | Perdew, J.P., Wang, Y., (1992) Phys. Rev., B45, pp. 13244-13249 | |
dc.description | (2000) ADF Program System, Releaase 2000.02, , Scientific Computing and Modelling: Amsterdam | |
dc.description | Jolly, W.L., Bomben, K.D., Eyermann, C.J., (1984) At. Data Nucl. Data Tables, 31, pp. 434-493 | |
dc.description | Exner, O., (1978) Correlation Analysis in Chemistry: Recent Advances, pp. 439-540. , Chapman NB, Shorter J (eds). Plenum Press: New York | |
dc.description | Johnson, C.D., (1973) The Hammett Equation, p. 93. , Cambridge University Press: Cambridge | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Physical Organic Chemistry | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Relationship Between Calculated Core-electron Binding Energy Shifts And Hammett Substituent (sigma) Constants: I | |
dc.type | Actas de congresos | |