Artículos de revistas
Formation Of Hydrogen Peroxide And Nitric Oxide In Rat Skeletal Muscle Cells During Contractions
Registro en:
Free Radical Biology And Medicine. , v. 35, n. 5, p. 455 - 464, 2003.
8915849
10.1016/S0891-5849(03)00271-5
2-s2.0-0142075358
Autor
Silveira L.R.
Pereira-Da-Silva L.
Juel C.
Hellsten Y.
Institución
Resumen
We examined intra- and extracellular H 2O 2 and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7- dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5- diaminofluorescein) were used to detect H 2O 2 and NO, respectively. Intense electrical stimulation of muscle cells increased the intra- and extracellular DCF fluorescence by 171% and 105%, respectively, compared with control nonstimulated cells (p < .05). The addition of glutathione (GSH) or Tiron prior to electrical stimulation inhibited the intracellular DCFH oxidation (p < .05), whereas the addition of GSH-PX + GSH inhibited the extracellular DCFH oxidation (p < .05). Intense electrical stimulation also increased (p < .05) the intra- and extracellular DAF-2 fluorescence signal by 56% and 20%, respectively. The addition of N G-nitro-L-arginine (L-NA) completely removed the intra- and extracellular DAF-2 fluorescent signal. Our results show that H 2O 2 and NO are formed in skeletal muscle cells during contractions and suggest that a rapid release of H 2O 2 and NO may constitute an important defense mechanism against the formation of intracellular •OH and •ONOO. Furthermore, our data show that DCFH and DAF-2 are suitable probes for the detection of ROS and NO both intra- and extracellularly in skeletal muscle cell cultures. © 2003 Elsevier Inc. 35 5 455 464 Chance, B., Sies, H., Boveris, A., Hydroperoxide metabolism in mammalian organs (1979) Physiol. Rev., 59, pp. 527-605 Halliwell, B., Gutteridge, J.M.C., The chemistry of oxygen radicals and other oxygen-derived species (1989) Free radicals in biology and medicine, pp. 136-158. , B. Halliwell, & J.M.C. Gutteridge. Oxford: Clarendon Press McCord, J.M., Fridovich, I., Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055 Meydani, M., Evans, W.J., Free radicals, exercise, and aging (1993) Free radical in aging, pp. 183-204. , B.P. Yu. Boca Raton, FL: CRC Press Kobzik, L., Reid, M.B., Bredt, D.S., Stamler, J.S., Nitric oxide in skeletal muscle (1994) Nature, 372, pp. 546-548 Reiser, P.J., Kline, W.O., Vaghy, P.A., Induction of neural type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo (1997) J. Appl. Physiol., 82, pp. 1250-1255 Tidball, J.G., Lavergne, E., Lau, K.S., Spencer, M.J., Stull, J.T., Wehling, M., Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle (1998) Am. J. Physiol., 275, pp. 260-C266 Shindoh, C.A., Dimarco, A., Thomas, A., Manubay, P., Supinski, G., Effect of N-acetylcysteine on diaphragm fatigue (1990) J. Appl. Physiol., 68, pp. 2107-2113 McAllister, R.M., Hirai, T., Musch, T., I. Contribution of endothelium-derived nitric oxide (EDNO) to the skeletal muscle blood flow response to exercise (1995) Med. Sci. Sports Exerc., 27, pp. 1145-1151 Wagner, P.D., Skeletal muscle angiogenesis. A possible role for hypoxia (2001) Adv. Exp. Med. Biol., 502, pp. 21-38 Pryor, W.A., Oxy-radical and related species: Their formation, lifetimes, and reactions (1986) Ann. Rev. Physiol., 48, pp. 657-667 Clanton, T.L., Zuo, L., Klawitter, P., Oxidants and skeletal muscle function: Physiologic and pathophysiologic implications (1999) Proc. Soc. Exp. Biol. Med., 222, pp. 253-262 Reid, M.B., Khawli, F.A., Moody, M.R., Reactive oxygen in skeletal muscle III. Contractility of infatigued muscle (1992) J. Appl. Physiol., 75, pp. 1081-1087 Davies, K.J.A., Quintanilha, A.T., Brooks, G.A., Packer, L., Free radicals and tissue damage produced by exercise (1982) Biochem. Biophys. Res. Commun., 107, pp. 1198-1205 Jackson, M.J., Edwards, R.H.T., Symons, M.C.R., Electron spin resonance studies of intact mammalian skeletal muscle (1985) Biochim. Biophys. Acta, 847, pp. 185-190 Reid, M.B., Shoji, T., Moody, M.R., Entman, M.L., Reactive oxygen in skeletal muscle II. Extracellular release of free radical (1992) J. Appl. Physiol., 73, pp. 1805-1809 McArdle, A., Pattwell, D., Vasilaki, A., Griffiths, R.D., Jackson, M.J., Contractile activity-induced oxidative stress: Cellular origin and adaptive response (2001) Am. J. Physiol., 280, pp. 621-C627 O'Neill, C.A., Stebbins, C.L., Bonigut, S., Halliwell, B., Longhurst, J.C., Production of hydroxyl radicals in contractin skeletal muscle of cats (1996) J. Appl. Physiol., 81, pp. 1197-1206 Yu, B.P., Cellular defenses against damage from reactive oxygen species (1994) Physiol. Rev., 74, pp. 139-161 Halliwell, B., Mechanisms involved in the generation of free radicals (1996) Path. Biol., 44, pp. 6-13 Haber, F., Weiss, J.J., The catalytic decomposition of hydrogen peroxide by iron salts (1934) Proc. R. Soc. Lond. Ser., 147, pp. 332-351 Balon, T.W., Nadler, J.L., Nitric oxide release is present from incubated skeletal muscle preparations (1994) J. Appl. Physiol., 77, pp. 2519-2521 Bass, D.A., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M.C., Thomas, M., Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation (1983) J. Immunol., 130, pp. 1910-1917 Szejda, P., Parce, J.W., Seeds, M.S., Bass, D.A., Flow cytometric quantitation of oxidative product formation by polymorphonuclear leukocytes during phagocytosis (1984) J. Immunol., 133, pp. 3303-3307 Burow, S., Valet, G., Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity, and phagocytosis of human granulocytes with 2,7-dichlorofluorescein (DCF) (1987) Eur. J. Cell Biol., 43, pp. 128-133 LeBel, C.P., Ischiropoulos, H., Bondy, S., Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress (1992) Chem. Res. Toxicol., 5, pp. 227-231 Royall, J.A., Ischiropoulos, H., Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H 2O 2 in cultured endothelial cells (1993) Arch. Biochem. Biophys., 302, pp. 348-355 Zhu, H., Bannenberg, G.L., Moldeus, P., Shertzer, H.G., Oxidation pathways for the intracellular probe 2′,7′- dichlorofluorescein (1994) Arch. Toxicol., 68, pp. 582-587 Reyk, D.M.V., King, N.J.C., Dinauer, M.C., Hunt, N.H., The intracellular oxidation of 2′,7′-dichlorofluorescein in murine T lymphocytes (2001) Free Radic. Biol. Med., 30, pp. 82-88 Rao, K.M.K., Padmanabhan, J., Kilby, D.L., Cohen, H.J., Currie, M.S., Weinberg, J.B., Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofluorescein diacetate in the presence of a calmodulin inhibitor (1992) J. Leukoc. Biol., 51, pp. 496-500 Gunasekar, P.G., Kanthasamy, A.G., Borowitz, J.L., Isom, G.E., Monitoring intracellular nitric oxide formation by dichlorofluorescin in neuronal cells (1995) J. Neurosci. Methods, 61, pp. 15-21 Kojima, H., Sakurai, K., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., Nagano, T., Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore (1998) Chem. Pharm. Bull., 46, pp. 373-375 Nagata, N., Momose, K., Ishida, Y., Inhibitory effects of catecholamines and antioxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicatior of nitric oxide (1999) J. Biochem., 125, pp. 658-661 Cathcart, R., Schwiers, E., Ames, B. N. Detection of picomoles levels of hydroperoxides using a fluorescent dichlorofluorescein assay (1983) Anal. Biochem., 134, pp. 111-116 Lynge, J., Juel, C., Hellsten, Y., Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: Role of adenosine transporters (2001) J. Physiol., 537, pp. 597-605 Hellsten, Y., Frandsen, U., Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture (1997) J. Physiol., 504, pp. 695-704 Bredt, D., Endogenous nitric oxide synthesis: Biological functions and pathophysiology (1999) Free Radic. Res., 31, pp. 577-596 Hussain, S.N.A., Activity of nitric oxide synthase in the ventilatory muscle vasculature (1998) Comp. Biochem. Physiol., 119 A, pp. 191-201 Carter, W.O., Narayanan, P.K., Robinson, J.P., Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells (1994) J. Leukoc. Biol., 55, pp. 253-258 Greenstock, C.L., Miller, R.W., The oxidation of tiron by superoxide anion kinetics of the reaction in aqueous solution and in chloroplasts (1975) Biochim. Biophys. Acta, 396, pp. 11-16 Diaz, P.T., She, Z.W., Davis, W.B., Clanton, T.L., Hydroxylation of salicylate by the in vitro diaphragm: Evidence for hydroxyl radical production during fatigue (1993) J. Appl. Physiol., 75, pp. 540-545 Supinski, G., Nethery, D., DiMarco, A., Effect of free radical scavengers on endotoxin-induced respiratory muscle dysfunction (1993) Am. Rev. Respir. Dis., 148, pp. 1318-1324 Murrant, C.L., Andrade, F.H., Reid, M.B., Exogenous reactive oxygen and nitric oxide alter intracellular oxidant status of skeletal muscle fibres (1999) Acta Physiol. Scand., 166, pp. 111-121 Nakane, M., Schmidt, H.H.H., Pollock, J.S., Forstermann, U., Murad, F., Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle (1993) FEBS Lett., 316, pp. 175-180 Frandsen, U., Lopez-Figueroa, M.O., Hellsten, Y. Localization of nitric oxide synthase in human skeletal muscle (1996) Biochem. Biophys. Res. Commun., 227, pp. 88-93 Wolin, M.S., Hintze, T.H., Shen, W., Mohazzab, H., Xie, Y.W., Involvement of reactive oxygen and nitrogen species in signaling mechanisms that control tissue respiration in muscle (1997) Biochem. Soc. Trans., 25, pp. 934-939 Guo, Y., Greenwood, M.T., Petrof, B.J., Hussain, S.N.A., Expression and regulation of protein inhibitor of neural nitric oxide synthase in ventilatory muscles (1999) Am. J. Respir. Cell Mol. Biol., 20, pp. 319-326 Reid, M.B., Role of nitric oxide in skeletal muscle: Synthesis, distribution, and functional importance (1998) Acta Physiol. Scand., 162, pp. 401-409 Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide (1990) Proc. Nat. Acad. Sci. USA, 87, pp. 1620-1624 López-Figueroa, M.O., Caamaño, C., Morano, M.I., Ronn, L.C., Akil, H., Watson, S.J., Direct evidence of nitric oxide presence within mitochondria (2000) Biochem. Biophys. Res. Commun., 272, pp. 129-133