Artículos de revistas
S-nitrosation Of The Insulin Receptor, Insulin Receptor Substrate 1, And Protein Kinase B/akt: A Novel Mechanism Of Insulin Resistance
Registro en:
Diabetes. , v. 54, n. 4, p. 959 - 967, 2005.
121797
10.2337/diabetes.54.4.959
2-s2.0-15944378147
Autor
Carvalho-Filho M.A.
Ueno M.
Hirabara S.M.
Seabra A.B.
Carvalheira J.B.C.
De Oliveira M.G.
Velloso L.A.
Curi R.
Saad M.J.A.
Institución
Resumen
Evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance in muscle. Here, we investigated whether this insulin resistance could be mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway. Exogenous NO donated by S-nitrosoglutathione (GSNO) induced in vitro and in vivo S-nitrosation of the insulin receptor β subunit (IRβ) and protein kinase B/Akt (Akt) and reduced their kinase activity in muscle. Insulin receptor substrate (IRS)-1 was also rapidly S-nitrosated, and its expression was reduced after chronic GSNO treatment. In two distinct models of insulin resistance associated with enhanced iNOS expression-diet-induced obesity and the ob/ob diabetic mice-we observed enhanced S-nitrosation of IRβ/IRS-1 and Akt in muscle. Reversal of S-nitrosation of these proteins by reducing iNOS expression yielded an improvement in insulin action in both animal models. Thus, S-nitrosation of proteins involved in insulin signal transduction is a novel molecular mechanism of iNOS-induced insulin resistance. © 2005 by the American Diabetes Association. 54 4 959 967 Lane, P., Gross, S.S., Cell signaling by nitric oxide (1999) Semin Nephrol, 19, pp. 215-229 Gross, S.S., Wolin, M.S., Nitric oxide: Pathophysiological mechanisms (1995) Annu Rev Physiol, 57, pp. 737-769 Stamler, J.S., Simon, D.I., Osborne, J.A., Muffins, M.E., Jaraki, O., Michel, T., Singel, D.J., Loscalzo, J., S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds (1992) Proc Natl Acad Sci U S A, 89, pp. 444-448 Stamler, J.S., Toone, E.J., Lipton, S.A., Sucher, N.J., (S)NO signals: Translocation, regulation, and a consensus motif (1997) Neuron, 18, pp. 691-696 Lander, H.M., Ogiste, J.S., Pearce, S.F., Levi, R., Novogrodsky, A., Nitric oxide-stimulated guanine nucleotide exchange on p21ras (1995) J Biol Chem, 270, pp. 7017-7020 Broillet, M.C., Firestein, S., Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds (1996) Neuron, 16, pp. 377-385 Molina Y Vedia, L., McDonald, B., Reep, B., Brune, B., Di Silvio, M., Billiar, T.R., Lapetina, E.G., Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation (1992) J Biol Chem, 267, pp. 24929-24932 Kapur, S., Bedard, S., Marcotte, B., Cote, C.H., Marette, A., Expression of nitric oxide synthase in skeletal muscle: A novel role for nitric oxide as a modulator of insulin action (1997) Diabetes, 46, pp. 1691-1700 Shimabukuro, M., Ohneda, M., Lee, Y., Unger, R.H., Role of nitric oxide in obesity-induced beta cell disease (1997) J Clin Invest, 100, pp. 290-295 Shimabukuro, M., Zhou, Y.T., Levi, M., Unger, R.H., Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes (1998) Proc Natl Acad Sci U S A, 95, pp. 2498-2502 Zhou, Y.T., Grayburn, P., Karim, A., Shimabukuro, M., Higa, M., Baetens, D., Orci, L., Unger, R.H., Lipotoxic heart disease in obese rats: Implications for human obesity (2000) Proc Natl Acad Sci U S A, 97, pp. 1784-1789 Sugita, H., Kaneki, M., Tokunaga, E., Sugita, M., Koike, C., Yasuhara, S., Tompkins, R.G., Martyn, J.A., Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance (2002) Am J Physiol Endocrinol Metab, 282, pp. E386-E394 Hotamisligil, G.S., Arner, P., Caro, J.F., Atkinson, R.L., Spiegelman, B.M., Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance (1995) J Clin Invest, 95, pp. 2409-2415 Yudkin, J.S., Stehouwer, C.D., Emeis, J.J., Coppack, S.W., C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? (1999) Arterioscler Thromb Vasc Biol, 19, pp. 972-978 Hotamisligil, G.S., Shargill, N.S., Spiegelman, B.M., Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance (1993) Science, 259, pp. 87-91 Hotamisligil, G.S., Spiegelman, B.M., Tumor necrosis factor-α: A key component of the obesity-diabetes link (1994) Diabetes, 43, pp. 1271-1278 Bedard, S., Marcotte, B., Marette, A., Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase (1997) Biochem J, 325, pp. 487-493 Kapur, S., Marcotte, B., Marette, A., Mechanism of adipose tissue iNOS induction in endotoxemia (1999) Am J Physiol, 276, pp. E635-E641 Perreault, M., Marette, A., Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle (2001) Nat Med, 7, pp. 1138-1143 Storlien, L.H., James, D.E., Burleigh, K.M., Chisholm, D.J., Kraegen, E.W., Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats (1986) Am J Physiol, 251, pp. E576-E583 Oliveira, M.G., Shishido, S.M., Seabra, A.B., Morgon, N.H., Thermal stability of primary S-nitrosothiols: Roles of autocatalysis and structural effects on the rate of nitric oxid release (2002) J Phys Chem A, 106, pp. 8963-8970 Crettaz, M., Prentki, M., Zaninetti, D., Jeanrenaud, B., Insulin resistance in soleus muscle from obese Zucker rats: Involvement of several defective sites (1980) Biochem J, 186, pp. 525-534 Ceddia, R.B., William Jr., W.N., Curi, R., Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: Evidence for an effect of leptin on glucose uptake and decarboxylation (1999) Int J Obes Relat Metab Disord, 23, pp. 75-82 Leighton, B., Cooper, G.J., Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro (1988) Nature, 335, pp. 632-635 Bonora, E., Moghetti, P., Zancanaro, C., Cigolini, M., Querena, M., Cacciatori, V., Corgnati, A., Muggeo, M., Estimates of in vivo insulin action in man: Comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies (1989) J Clin Endocrinol Metab, 68, pp. 374-378 Saad, M.J., Araki, E., Miralpeix, M., Rothenberg, P.L., White, M.F., Kahn, C.R., Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance (1992) J Clin Invest, 90, pp. 1839-1849 Jaffrey, S.R., Snyder, S.H., The biotin switch method for the detection of S-nitrosylated proteins (2001) Sci STKE, 2001, pp. PL1 Martinez-Ruiz, A., Lamas, S., Detection and proteomic identification of S-nitrosylated proteins in endothelial cells (2004) Arch Biochem Biophys, 423, pp. 192-199 Park, H.S., Park, E., Kim, M.S., Ahn, K., Kim, I.Y., Choi, E.J., Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism (2000) J Biol Chem, 275, pp. 2527-2531 Miles, A.M., Wink, D.A., Cook, J.C., Grisham, M.B., Determination of nitric oxide using fluorescence spectroscopy (1996) Methods Enzymol, 268, pp. 105-120 Wink, D.A., Grisham, M.B., Mitchell, J.B., Ford, P.C., Direct and indirect effects of nitric oxide in chemical reactions relevant to biology (1996) Methods Enzymol, 268, pp. 12-31 Saad, M.J., Carvalho, C.R., Thirone, A.C., Velloso, L.A., Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat (1996) J Biol Chem, 271, pp. 22100-22104 Peraldi, P., Hotamisligil, G.S., Buurman, W.A., White, M.F., Spiegelman, B.M., Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase (1996) J Biol Chem, 271, pp. 13018-13022 Li, M., Pascual, G., Glass, C.K., Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene (2000) Mol Cell Biol, 20, pp. 4699-4707 Stamler, J.S., Lamas, S., Fang, F.C., Nitrosylation: The prototypic redox-based signaling mechanism (2001) Cell, 106, pp. 675-683 Rizzo, M.A., Piston, D.W., Regulation of beta cell glucokinase by S-nitrosylation and association with nitric oxide synthase (2003) J Cell Biol, 161, pp. 243-248 Chung, K.K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J.C., Marsh, L., Dawson, V.L., Dawson, T.M., S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function (2004) Science, 304, pp. 1328-1331 Matsushita, K., Morrell, C.N., Cambien, B., Yang, S.X., Yamakuchi, M., Bao, C., Hara, M.R., Lowenstein, C.J., Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor (2003) Cell, 115, pp. 139-150 Sugita, H., Sugita, M., Kaneki, M., iNOS gene disruption restores depressed IRS-1 expression in skeletal muscle and ameliorates insulin resistance in (ob/ob) mice (2003) Diabetes, 52 (SUPPL. 1), pp. A299 Saad, M.J., Folli, F., Kahn, J.A., Kahn, C.R., Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats (1993) J Clin Invest, 92, pp. 2065-2072 Zecchin, H.G., Bezerra, R.M., Carvalheira, J.B., Carvalho-Filho, M.A., Metze, K., Franchini, K.G., Saad, M.J., Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance: The obese middle-aged and the spontaneously hypertensive rats (2003) Diabetologia, 46, pp. 479-491 Elchebly, M., Fayette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Kennedy, B.P., Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene (1999) Science, 283, pp. 1544-1548 Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., Spiegelman, B.M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance (1996) Science, 271, pp. 665-668 Chin, J.E., Liu, F., Roth, R.A., Activation of protein kinase C alpha inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (1994) Mol Endocrinol, 8, pp. 51-58 De Fea, K., Roth, R.A., Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase (1997) J Biol Chem, 272, pp. 31400-31406 Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C.Z., Uysal, K.T., Maeda, K., Karin, M., Hotamisligil, G.S., A central role for JNK in obesity and insulin resistance (2002) Nature, 420, pp. 333-336 Li, S., Whorton, A.R., Regulation of protein tyrosine phosphatase 1B in intact cells by S-nitrosothiols (2003) Arch Biochem Biophys, 410, pp. 269-279 Gow, A.J., Chen, Q., Hess, D.T., Day, B.J., Ischiropoulos, H., Stamler, J.S., Basal and stimulated protein S-nitrosylation in multiple cell types and tissues (2002) J Biol Chem, 277, pp. 9637-9640 Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Kahn, B.B., Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice (2000) Mol Cell Biol, 20, pp. 5479-5489 Kwon, G., Xu, G., Marshall, C.A., McDaniel, M.L., Tumor necrosis factor alpha-induced pancreatic beta-cell insulin resistance is mediated by nitric oxide and prevented by 15-deoxy-delta12,14- prostaglandin J2 and amino-guanidine: A role for peroxisome proliferator- activated receptor gamma activation and inos expression (1999) J Biol Chem, 274, pp. 18702-18708 Maggi Jr., L.B., Sadeghi, H., Weigand, C., Scarim, A.L., Heitmeier, M.R., Corbett, J.A., Anti-inflammatory actions of 15-deoxy-delta 12,14-prostaglandin J2 and troglitazone: Evidence for heat shock-dependent and -independent inhibition of cytokine-induced inducible nitric oxide synthase expression (2000) Diabetes, 49, pp. 346-355