dc.creatorMonnerat S.M.
dc.creatorde Miranda Pizzi T.R.
dc.creatorMauro M.A.
dc.creatorMenegalli F.C.
dc.date2005
dc.date2015-06-26T14:07:45Z
dc.date2015-11-26T15:41:46Z
dc.date2015-06-26T14:07:45Z
dc.date2015-11-26T15:41:46Z
dc.date.accessioned2018-03-28T22:50:18Z
dc.date.available2018-03-28T22:50:18Z
dc.identifier
dc.identifierDrying Technology. , v. 23, n. 9-11, p. 2289 - 2299, 2005.
dc.identifier7373937
dc.identifier10.1080/07373930500212792
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-27144453320&partnerID=40&md5=d5f6a2797523b0590cba324d8f9f7120
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93424
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93424
dc.identifier2-s2.0-27144453320
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264696
dc.descriptionHalf-fresh apples were immersed in sucrose solution (50% w/w, 27°C) during different times of exposition (2, 4, and 8 h). Then each fruit was sliced from the transversal exposed surface. Density, water, and sugar content were determined for each slice. A mathematical model was fitted to experimental data of water and sucrose content considering the global flux and the tissue shrinkage. By numerical analysis, the binary effective diffusion coefficients as a function of concentration were calculated, using material coordinates and integrating simultaneously two differential equations (for water and sucrose). The coefficients obtained are one or even two orders of magnitude lower than the ones for pure solutions and present an unusual concentration dependence. This comparison shows the influence of the tissue resistance to the diffusion. Copyright © 2005 Taylor & Francis, Inc.
dc.description23
dc.description9-11
dc.description2289
dc.description2299
dc.descriptionSpiess, W.E.L., Behsnilian, D., Osmotic treatments in food processing-Current state and future needs (1998) Proceedings of the 11th International Drying Symposium, A, pp. 47-56
dc.descriptionMauro, M.A., Tavares, D.Q., Menegalli, F.C., Behavior of plant tissue in osmotic solutions (2003) Journal of Food Engineering, 56, pp. 1-15
dc.descriptionMoreira, R., Sereno, A.M., Control of solids uptake by convective drying prior to osmotic processing of Foods (2004) Drying Technology, 22 (4), pp. 745-757
dc.descriptionLe Maguer, M., Mass transfer modeling in structured foods (1997) Food Engineering 2000, pp. 253-269. , 1st Ed
dc.descriptionFito, P., Ortega-Rodriguez, E., Barbosa-Cánovas, G., Eds.
dc.descriptionChapman & Hall: New York
dc.descriptionNelson, N., A photometric adaptation of the Somogyi method for the determination of glucose (1944) The Journal of Biological Chemistry, 153, pp. 375-380
dc.descriptionSomogyi, M., A new reagent for the determination of sugars (1945) J. Biol. Chem., 160, pp. 61-68
dc.descriptionWilliam, H., (1970) Official Methods of Analysis, , 11th Ed
dc.descriptionAssociation of Official Analytical Chemists: Washington, DC
dc.descriptionRodrigues, A.E., Desidratação Osmótica e Secagem de Maçãs-I. Comportamento do Tecido em Soluções Osmóticas -II. Modelagem Matemática da Difusão (2003), Master's Thesis, Department of Food Engineering and Technology, Institute of Biosciences, Language, and Physical Sciences (IBILCE), Paulista State University (UNESP), BrazilMauro, M.A., Menegalli, F.C., Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration (2003) Journal of Food Engineering, 57, pp. 367-374
dc.descriptionCussler, E.L., (1984) Diffusion-Mass Transfer in Fluid Systems, , 1st Ed
dc.descriptionCambridge University Press: Cambridge
dc.descriptionBillovits, G.F., Durning, C.J., Polymer material coordinates for mutual diffusion in polymer-penetrant systems (1989) Chemical Engineering Communication, 82, pp. 21-44
dc.description(2004), http://www.nal.usda.gov/fnic/foodcomp, USDA National Nutrient Database for Standard Reference, Release 17
dc.descriptionU.S. Department of Agriculture, Agricultural Research Service, 2004. (accessed September)Crank, J., (1975) The Mathematics of Diffusion, , 2nd Ed.
dc.descriptionClarendon Press Oxford: London
dc.descriptionSalvatori, D., Andrés, A., Chiralt, A., Fito, P., Osmotic dehydration progression in apple tissue I: Spatial distribution of solutes and moisture content (1999) Journal of Food Engineering, 42, pp. 125-132
dc.descriptionHenrion, P.N., Diffusion in the sucrose + water system (1964) Transaction Faraday Society, 60, pp. 72-74
dc.descriptionMauro, M.A., Menegalli, F.C., Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration (2003) Journal of Food Engineering, 57, pp. 367-374
dc.descriptionAguilera, J.M., Stanley, D.W., (1999) Microstructural Principles of Food Processing and Engineering, , 2nd Ed.
dc.descriptionAspen Publishers: Gaithersburg, MD
dc.languageen
dc.publisher
dc.relationDrying Technology
dc.rightsfechado
dc.sourceScopus
dc.titleSpatial Distribution Of Solutes And Water In Sucrose Solution Dehydrated Apples
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución