dc.creatorMoreira M.
dc.creatorGurgel A.C.
dc.creatorSeabra J.E.A.
dc.date2014
dc.date2015-06-25T17:56:19Z
dc.date2015-11-26T15:41:32Z
dc.date2015-06-25T17:56:19Z
dc.date2015-11-26T15:41:32Z
dc.date.accessioned2018-03-28T22:50:02Z
dc.date.available2018-03-28T22:50:02Z
dc.identifier
dc.identifierEnvironmental Science And Technology. American Chemical Society, v. 48, n. 24, p. 14756 - 14763, 2014.
dc.identifier0013936X
dc.identifier10.1021/es503217g
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84918564852&partnerID=40&md5=f58d3a567af20ff6a553cc10d79a80ee
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87005
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87005
dc.identifier2-s2.0-84918564852
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264639
dc.descriptionThis study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.
dc.description48
dc.description24
dc.description14756
dc.description14763
dc.descriptionBoeing
dc.descriptionElmekawy, A., Diels, L., De Wever, H., Pant, D., Valorization of cereal based biorefinery byproducts: Reality and expectations (2013) Environ. Sci. Technol., 47 (16), pp. 9014-9027
dc.description(2007) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, , IPCC. Cambridge University Press: Cambridge, United Kingdom
dc.descriptionSgouridis, S., Bonnefoy, P., Hansman, R., Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation (2011) Transp. Res., Part A: Policy and Practice, 45 (10), pp. 1077-1091
dc.descriptionMarsh, G., Biofuels: Aviation alternative? (2008) Renewable Energy Focus, (JULY-AUGUST), pp. 48-51
dc.description(2010) ICAO Environmental Report 2010: Aviation and Climate Change, p. 260. , ICAO. International Civil Aviation Organization: Montreal
dc.descriptionKhatiwada, D., Seabra, J., Silveira, S., Walter, A., Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations (2012) Energy Policy, 47, pp. 384-397
dc.descriptionWalter, A., Dolzan, P., Quilodran, O., De Oliveira, J., Da Silva, C., Piacente, F., Segerstedt, A., Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects (2011) Energy Policy, 39 (10), pp. 5703-5716
dc.description(2009) Staff Report: Proposed Regulation to Implement the Low Carbon Fuel Standard, , CARB. California Air Resources Board: Sacramento, CA, March 5
dc.description(2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, , U.S. EPA. Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency: Washington, DC
dc.description(2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/ 30/EC, , EC
dc.descriptionAmyris, (2012), http://www.amyris.com/, September(2009) Staff Report: Detailed California-Modified GREET Pathway for Brazilian Sugar Cane Ethanol, , CARB. California Air Resources Board: Sacramento, CA, July 20
dc.descriptionFinnveden, G., Hauschild, M., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., Koehler, A., Suh, S., Recent developments in Life Cycle Assessment (2009) J. Environ. Manage., 91 (1), pp. 1-21
dc.description(2009) The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model, , v 1.8c.0
dc.descriptionArgonne National Laboratory: Argonne, IL
dc.description(2011) Low Carbon Fuel Standard 2011 Program Review Report, , CARB. California Air Resources Board: Sacramento, CA, September 12
dc.descriptionTyner, W.E., Taheripour, F., Golub, A.A., (2011) Calculation of Indirect Land Use Change (ILUC) Values for Low Carbon Fuel Standard (LCFS) Fuel Pathways, , https://www.gtap.agecon.purdue.edu/resources/download/5629.pdf, CARB and California Environmental Protection Agency: Sacramento, CA
dc.descriptionHertel, T., (1997) Global Trade Analysis: Modeling and Applications, , Cambridge University Press: Cambridge
dc.descriptionHertel, T., Golub, A., Jones, A., O'Hare, M., Plevin, R., Kammen, D., Effects of US maize ethanol on global land use and greenhouse gas emissions: Estimating market-mediated responses (2010) Bioscience, 60 (3), pp. 223-231
dc.descriptionHertel, T., Tyner, W., Birur, D., The global impacts of biofuel mandates (2010) Energy J., 31 (1), pp. 75-100
dc.descriptionPlevin, R.J., Gibbs, H.K., Duffy, J., Yeh, S., (2011) Agro-ecological Zone Emission Factor Model, , University of California: Berkeley, CA
dc.descriptionUniversity of Wisconsin: Madison, WI
dc.descriptionCalifornia Air Resources Board: Sacramento, CA, September 12
dc.descriptionGardner, T.S., Hawkins, K.M., Meadows, A.L., Tsong, A.E., Tsegaye, Y., (2013) Production of Acetyl-coenzyme A Derived Isoprenoids, , U.S. Patent, Accessed via Google Patents
dc.descriptionAmyris, (2014) Total and Amyris Renewable Jet Fuel Ready for Use in Commercial Aviation, , http://www.amyris.com/News/398/Total-and-Amyris-Renewable-Jet-Fuel-Ready-for-Use-in-Commercial-Aviation, press release
dc.descriptionEcoinvent Centre, http://www.ecoinvent.chSeabra, J., Macedo, I., Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil (2011) Energy Policy, 39 (1), pp. 421-428
dc.description(2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, , IPCC. IGES: Hayama
dc.description(1999) Aviation and the Global Atmosphere, , IPCC. Cambridge University Press: Cambridge, England
dc.descriptionGibbs, H.K., Yui, S., (2011) New Spatially-Explicit Estimates of Soil and Biomass Carbono Stocks by GTAP Region and AEZ, , University of Wisconsin: Madison, WI
dc.descriptionUniversity of California: Davis, CA
dc.descriptionMartha, G., Alves, E., Contini, E., Land-saving approaches and beef production growth in Brazil (2012) Agric. Syst., 110, pp. 173-177
dc.descriptionHarris, N., Grimland, S., Brown, S., (2009) Land Use Change and Emission Factors: Updates since the RFS Proposed Rule, , www.regulations.gov, Report submitted to EPA, available at Docket ID #EPA-HQ-OAR-2005-0161-3163
dc.descriptionMarelli, L., Ramos, F., Hiederer, R., Koeble, R., (2011) Estimate of GHG Emissions from Global Land Use Change Scenarios, , JRC, IE, IES: Ispra, Italy
dc.descriptionLisboa, C., Butterbach-Bahl, K., Mauder, M., Kiese, R., Bioethanol production from sugarcane and emissions of greenhouse gases - Known and unknowns (2011) Global Change Biol. Bioenergy, 3 (4), pp. 277-292
dc.descriptionGaldos, M., Cerri, C., Lal, R., Bernoux, M., Feigl, B., Cerri, C., Net greenhouse gas fluxes in Brazilian ethanol production systems (2010) Global Change Biol. Bioenergy, 2 (1), pp. 37-44
dc.descriptionAmaral, W.A.N., Marinho, J.P., Tarasantchi, R., Beber, A., Guiliani, E., Environmental sustainability of sugarcane ethanol in Brazil (2008) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment, , Zuurbier, P. van de Vooren, J. Wageningen Academic Publishers: Wageningen
dc.descriptionNovaes, M.R., Rudorff, B.F.T., Almeida, C.M., Aguiar, D.A., Analise espacial da redução da queima na colheita da cana-de-açúcar (2011) Eng. Agríc., 31 (3), pp. 572-583
dc.descriptionAguiar, D., Rudorff, B., Silva, W., Adami, M., Mello, M., Remote sensing images in support of environmental protocol: Monitoring the sugarcane harvest in Sao Paulo State, Brazil (2011) Remote Sens., 3 (12), pp. 2682-2703
dc.descriptionAgroenviromental protocol, (2012), www.ambiente.sp.gov.br/etanolverde/protocolo-agroambiental/o-protocolo/, September(2009) Zoneamento Agroecológico da Cana-de-açúcar - ZAE Cana, , Embrapa
dc.descriptionCerri, C., Galdos, M., Maia, S., Bernoux, M., Feigl, B., Powlson, D., Cerri, C., Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: An examination of existing data (2011) Eur. J. Soil Sci., 62 (1), pp. 23-28
dc.descriptionSeabra, J., Macedo, I., Chum, H., Faroni, C., Sarto, C., Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use (2011) Biofuels, Bioprod. Biorefin., 5 (5), pp. 519-532
dc.descriptionMacedo, I., Seabra, J., Silva, J., Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020 (2008) BiomassBioenergy, 32 (7), pp. 582-595
dc.description(2013) The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model, , GREET1-2013
dc.descriptionArgonne National Laboratory: Argonne, IL
dc.languageen
dc.publisherAmerican Chemical Society
dc.relationEnvironmental Science and Technology
dc.rightsfechado
dc.sourceScopus
dc.titleLife Cycle Greenhouse Gas Emissions Of Sugar Cane Renewable Jet Fuel
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución