dc.creatorAlbuquerque A.
dc.creatorPastore H.O.
dc.creatorMarchese L.
dc.date2005
dc.date2015-06-26T14:07:08Z
dc.date2015-11-26T15:41:28Z
dc.date2015-06-26T14:07:08Z
dc.date2015-11-26T15:41:28Z
dc.date.accessioned2018-03-28T22:49:58Z
dc.date.available2018-03-28T22:49:58Z
dc.identifier
dc.identifierStudies In Surface Science And Catalysis. , v. 155, n. , p. 45 - 55, 2005.
dc.identifier1672991
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-21244495696&partnerID=40&md5=599229643a02a02df48ab87a6f40f075
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93277
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93277
dc.identifier2-s2.0-21244495696
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264624
dc.descriptionThis work presents the synthesis and spectroscopic characterization of V-MCM-22, a novel molecular sieve. The synthesis was performed under static hydrothermal crystallization, using VOSO4 as source of vanadium at SiO2/V2O3 = 66 and hexamethyleneimine as structure-directing agent. Aluminum was also incorporated in the structure at SiO2/Al2O3 ratios (SAR) of 50 and 80, named V-MCM-22 (50) and V-MCM-22 (80) respectively. Only V-MCM-22 (50) showed higher crystallinity than the parent MCM-22. The insertion of vanadium ions in the framework sites was confirmed by diffuse reflectance (DR) UV-Vis and FTIR spectroscopy, the latter using CO adsorption at 100K. The V-MCM-22 (50) sample presented V in the 5+ state after calcination of the template; two families of vanadium sites were found: a family of distorted tetrahedral oxovanadium (SiO)3V=O species absorbing at 290, 250 and 330 nm which underwent a reduction to VIV (d-d transition at 550 nm) after treatment in H 2 at 500°C, and a family of tetrahedral oxovanadium with a lower distortion degree, which showed bands at 225, 245 and 265 nm. The latter species were stable after reduction. Hydroxyls bound either to the Lewis vanadium centers or to partially extra-framework Al ions were detected by FTIR and their acidity monitored by CO adsorption. The stretching frequency of these hydroxyls showed a red-shift of ca. 200 cm-1 by CO adsorption which suggests an acidity intermediate between silanols (90 cm-1) and bridged SiO(H)Al groups (320 cm-1). This material is a good candidate for selective oxidation reactions of organic molecules. © 2005 Elsevier B.V. All rights reserved.
dc.description155
dc.description
dc.description45
dc.description55
dc.descriptionBellussi, G., Rigutto, M.S., (2001) Stud. Surf. Sci. Catal., 137, p. 911
dc.descriptionHartmann, M., Kevan, L., (2002) Res. Chem. Intermed., 28, p. 625
dc.descriptionRubin, M.K., Chu, P., (1990), U. S. Patent 4 959 325Ravishankar, R., Sem, T., Ramaswamy, R., Soni, H.S., Ganapathy, S., Sivasanker, S., (1994) Stud. Surf. Sci. Catal., 84, p. 331
dc.descriptionHunger, M., Ernst, S., Weitkamp, J., (1995) Zeolites, 15, p. 188
dc.descriptionCorma, A., Corell, C., Pérez-Pariente, J., (1995) Zeolites, 15, p. 2
dc.descriptionMarques, A.L.S., Monteiro, J.L.F., Pastore, H.O., (1999) Micropor. Mesopor. Mater., 32, p. 131
dc.descriptionRigutto, M.S., Van Bekkum, H., (1991) Appl. Catal., 68, pp. L1
dc.descriptionCenti, G., Perathoner, S., Trifirò, F., Abukais, A., Aissi, C.F., Guelton, M., (1992) J. Phys. Chem., 96, p. 2617
dc.descriptionWark, M., Koch, M., Brückner, A., Grünert, (1998) J. Chem. Soc., Faraday Trans., 94, p. 2033
dc.descriptionDzwigaj, S., Matsuoka, M., Anpo, M., Che, M., (2000) J. Phys. Chem. B, 104, p. 6012
dc.descriptionPrakash, A.M., Kevan, L., (2000) J. Phys. Chem. B, 104, p. 6860
dc.descriptionRao, P.R.H.P., Ramaswamy, A.V., Ratnasamy, P., (1992) J. Catal., 137, p. 225
dc.descriptionDzwigaj, S., Massiani, P., Davidson, A., Che, M., (2000) J. Mol. Catal. A, 155, p. 169
dc.descriptionColuccia, S., Marchese, L., Martra, G., (1999) Micropor. Mesopor. Mater., 30, p. 43
dc.descriptionMarchese, L., Bordiga, S., Coluccia, S., Martra, G., Zecchina, A., (1993) J. Chem. Soc., Faraday Trans., 89, p. 3483
dc.descriptionBerlocher, Ch., Meier, W.M., Olson, D.H., (2001) Atlas of Zeolite Framework Types, , http://www.iza-online.org/, Elsevier Science B.V. Amsterdam, The Netherlands
dc.descriptionTran, K., Hanning-Lee, M.A., Biswas, A., Stiegman, A.E., Scott, G.W., (1995) J. Am. Chem. Soc., 117, p. 2618
dc.descriptionLever, A.B.P., (1984) Inorganic Electronic Spectroscopy, , Elsevier Science Publishers B.V., Amsterdam, The Netherlands
dc.descriptionLawton, S.L., Fung, A.S., Kennedy, G.J., Alemany, L.B., Chang, C.D., Hatzikos, G.H., Lissy, D.N., Woessner, D.E., (1996) J. Phys. Chem., 100, p. 3788
dc.descriptionOnida, B., Geobaldo, F., Testa, F., Crea, F., Garrone, E., (1999) Micropor. Mesopor. Mater., 30, p. 119
dc.descriptionGhiotti, G., Garrone, E., Morterra, C., Boccuzzi, F., (1979) J. Phys. Chem., 83, p. 2863
dc.languageen
dc.publisher
dc.relationStudies in Surface Science and Catalysis
dc.rightsfechado
dc.sourceScopus
dc.titleV-mcm-22: Synthesis And Characterization Of A Novel Molecular Sieve
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución