dc.creatorDos Santos K.S.C.R.
dc.creatorSilva H.S.R.C.
dc.creatorFerreira E.I.
dc.creatorBruns R.E.
dc.date2005
dc.date2015-06-26T14:07:02Z
dc.date2015-11-26T15:41:19Z
dc.date2015-06-26T14:07:02Z
dc.date2015-11-26T15:41:19Z
dc.date.accessioned2018-03-28T22:49:49Z
dc.date.available2018-03-28T22:49:49Z
dc.identifier
dc.identifierCarbohydrate Polymers. , v. 59, n. 1, p. 37 - 42, 2005.
dc.identifier1448617
dc.identifier10.1016/j.carbpol.2004.08.020
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-10844294070&partnerID=40&md5=8174a495a9f925ff43a54528b528156d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93264
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93264
dc.identifier2-s2.0-10844294070
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264588
dc.descriptionA 32. factorial design investigation to optimize N-carboxybutylchitosan was carried out varying the levulinic acid/chitosan molar ratio between 1.00 and 3.00 and the sodium borohydride/chitosan molar ratio from 0.50 to 1.00. 1H NMR spectra signals at 1.0 and 2.5 ppm were used to monitor the reaction system. A quadratic model having significant terms for both molar ratios was found for N-carboxybutylchitosan substitution degree whereas a linear model best describes the substitution degree of 5-methylpyrrolidinone chitosan. Maximum N-carboxybutylchitosan and minimum 5-methylpyrrolidinone chitosan substitution degrees occur for levulinic acid/chitosan molar ratios between 2.00 and 3.00 and a 0.50 for sodium borohydride/chitosan molar ratio. © 2004 Elsevier Ltd. All rights reserved.
dc.description59
dc.description1
dc.description37
dc.description42
dc.descriptionAgullo, E., Rodriguez, M.S., Ramos, V., Albertengo, L., Present and future role of chitin and chitosan in food (2003) Macromolecular Bioscience, 3 (10), pp. 521-530
dc.descriptionBarros Neto, B.D., Scarminio, I.S., Bruns, R.E., (2002) Como Fazer Experimentos, , Campinas: Editora da Unicamp
dc.descriptionBiagini, G., Muzzarelli, R.A.A., Giardino, R., Castaldini, C., Biological materials for wound healing (1991) Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, pp. 16-24. , C. J. Brine, P. A. Sandford, J. P. Zikakis (Eds.), New York: Elsevier
dc.descriptionBox, G.E.P., Hunter, W.G., Hunter, J.S., (1978) Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building, , New York: Wiley
dc.descriptionChirkov, S.N., The antiviral activity of chitosan (review) (2002) Applied Biochemistry and Microbiology, 38 (1), pp. 1-8
dc.descriptionDuenas, M., Munduate, A., Perea, A., Irastorza, A., Exopoly-saccharide production by Pediococcus 2.6 in a semidefined médium under different growth conditions (2003) International Journal of Food Microbiology, 87 (1-2), pp. 113-120
dc.descriptionIlium, L., Chitosan and its use as a pharmaceutical excipient (1998) Pharmaceutical Research, 75 (9), pp. 1326-1331
dc.descriptionLi, Q., Dunn, E.T., Grandmaison, E.W., Goosen, M.F.A., Applications and properties of chitosan (1997) Applications of Chitin and Chitosan, pp. 3-29. , M. F. A. Goosen (Ed.), Lancaster: Technomic Publishing Company
dc.descriptionLim, S.H., Hudson, S.M., Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals (2003) Journal of Macromolecular Science-polymer Reviews, C43 (2), pp. 223-269
dc.descriptionMorris, N.D., Mallouk, T.E., A high-throughput optical screening method for the optimization of colloidal water oxidation catalyst (2002) Journal of the American Chemical Society, 124 (31), pp. 11114-11121
dc.descriptionMuzzarelli, R.A.A., Ilari, P., Tomasetti, M., Preparation and characteristic properties of 5-methyl pyrrolidinone chitosan (1993) Carbohydrate Polymers, 20 (2), pp. 99-105
dc.descriptionMuzzarelli, R.A.A., Weckx, M., Filippini, O., Lough, C., Characteristic properties of N-carboxybutyl chitosan (1989) Carbohydrate Polymers, 11 (4), pp. 307-320
dc.descriptionRabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., Steurbaut, W., Chitosan as antimicrobial agent: Applications and mode of action (2003) Biomacromolecules, 4 (6), pp. 1457-1465
dc.descriptionRavi Kumar, M.N.V., A review of chitin and chitosan applications (2000) Réactive and Functional Polymers, 46 (1), pp. 1-27
dc.descriptionRinaudo, M., Desbrières, J., Le Dung, P., Thuy Binh, P., Dong, N.T., NMR investigation of chitosan derivatives formed by the reaction of chitosan with levulinic acid (2001) Carbohydrate Polymers, 46 (4), pp. 339-348
dc.descriptionShigemasa, Y., Matsuura, H., Sashiwa, H., Saimoto, H., Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin (1996) International Journal of Biological Macromolecules, 75 (3), pp. 237-242
dc.descriptionSingla, A.K., Chawla, M., Chitosan: Some pharmaceutical and biological aspects - An update (2001) Journal of Pharmacy and Pharmacology, 55 (8), pp. 1047-1067
dc.descriptionTagliabue, M., Carluccio, L.C., Ghisletti, D., Perego, C., Multivariate approach to zeolite synthesis (2003) Catalysis Today, 81 (3), pp. 405-412
dc.languageen
dc.publisher
dc.relationCarbohydrate Polymers
dc.rightsfechado
dc.sourceScopus
dc.title32 Factorial Design And Response Surface Analysis Optimization Of N-carboxybutylchitosan Synthesis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución