dc.creatorNeto T.G.S.
dc.creatorCobo A.J.G.
dc.creatorCruz G.M.
dc.date2005
dc.date2015-06-26T14:07:10Z
dc.date2015-11-26T15:41:16Z
dc.date2015-06-26T14:07:10Z
dc.date2015-11-26T15:41:16Z
dc.date.accessioned2018-03-28T22:49:46Z
dc.date.available2018-03-28T22:49:46Z
dc.identifier
dc.identifierApplied Surface Science. , v. 240, n. 1-4, p. 355 - 365, 2005.
dc.identifier1694332
dc.identifier10.1016/j.apsusc.2004.07.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-10444258140&partnerID=40&md5=230e877cfd16a59a907af678d145e42c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93288
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93288
dc.identifier2-s2.0-10444258140
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264578
dc.descriptionIr/Al2O3 catalysts with high metallic contents are applied on satellite thruster to decompose hydrazine. The present work has as principal aim the study of the morphologic evolution of Ir/Al2O 3 catalysts with metallic contents from 12 to 30 wt.%. The catalysts were prepared through consecutive impregnations from the H2IrCl 6 precursor, using three different types of aluminas. The specific surface area, volume and distribution of pore size, specific metallic area and metallic particles average diameter, as well as the mechanical resistance were determined. Results show that the Ir addition leads to a decrease of the specific surface area and the pores volumes, while increases the mechanical resistance. Values for average diameter of metallic particles are comprised between 1.4 and 2.4 nm when the metallic content increases from 12 to 30 wt.%. Catalysts containing 30 wt.% of Ir presents specific metallic areas around 30 m2/g, although pores volumes and distributions of pore size were considerably different for the three supports. Their metallic particles dispersion and size values are very close to those of a commercial catalyst Shell 405, even though the preparation methods were different. These results show that there is a strong interaction between the alumina and the iridium precursor. © 2004 Elsevier B.V. All rights reserved.
dc.description240
dc.description1-4
dc.description355
dc.description365
dc.descriptionSchmidt, E.W., (1984) Hydrazine and Its Derivatives - Preparation, Properties and Applications, , Wiley, New York
dc.descriptionPfeffer, H.A., Esa activities in the field of hydrazine monopropellant technology for satellite auxiliary propulsion (1976) ESA Sci. Tech. Rev., 2, p. 43
dc.descriptionValentini, R., Hydrazine thrusters for space applications (1977) ESA Attitude and Orbit Control Systems, p. 435. , ESA-SP-128
dc.descriptionHartung, W., Evaluation tests of new German catalysts for the spontaneous decomposition of hydrazine (1974) Proceedings of the International Conference on the Properties of Hydrazine and Its Potential Applications as an Energy Source, p. 109. , CNES/ Univ., Poitiers
dc.descriptionHartung, W., Weidenbach, O., Tiedtke, P., A new catalysts for monopropellant hydrazine thrusters (1977) Proceedings of the AOCS Conference, , Noordwijk
dc.descriptionArmstrong, W.E., Ryland, L.B., Voge, H.H., (1980), Catalyst for hydrazine decomposition and method for preparing such catalyst, UK Patent Application GB 2027357 - AArmstrong, W.E., Ryland, L.B., Voge, H.H., (1978), Iridium or iridium-ruthenium catalyst for hydrazine decomposition, US Patent 4124538 - AArmstrong, W.E., Ryland, L.B., Voge, H.H., (1980) Catalyseur Pour la Decomposition de l'Hydrazine, , Brevet D'Invention FR 2433371 - A
dc.descriptionContour, J.P., (1970) Sur la Décomposition Catalytique de L'hydrazine Mise au Point d'un Nouveau Catalyseur et Étude de Quelques Unes de ses Proprietés Superficialles, 177p. , These de Doctorat d'ETAT es Sciences Physiques, Paris, Faculté des Sciences de Paris
dc.descriptionCruz, G.M., Cunha, D.S., Rodrigues, J.A.J., Freitas, A.G., (1989) Catal. Today, 5, p. 473
dc.descriptionCruz, G.M., Cunha, D.S., Soares Neto, T.G., (1989) 5° Seminário Brasileiro de Catálise, , Guarujá
dc.descriptionBrunauer, S., Emmett, P.H., Teller, E., (1938) J. Am. Chem. Soc., 60, p. 309
dc.descriptionBarret, E.P., Joyner, L.G., Halenda, P.P., (1951) J. Am. Chem. Soc., 73, p. 377
dc.descriptionFigueiredo, J.L., Ribeiro, F.R., (1989) Catálise Heterogênea, pp. 110-111. , Fundação Calouste Gulbenkian, Lisboa
dc.descriptionAnderson, J.R., (1975) Structure of Metallic Catalysts, , Academic Press, New York
dc.descriptionSoares Neto, T.G., Cobo, A.J.G., Cruz, G.M., (2003) Appl. Catal. A, 250, p. 331
dc.descriptionGreer, H., King, S.M., Marx, P.C., Taylor, D., (1971) J. Spacecraft., 8 (2), p. 105
dc.descriptionCunha, D.S., Cruz, G.M., (2002) Appl. Catal. A, 236, p. 55
dc.descriptionBoudart, M., Djéga-Mariadassou, G., (1984) Kinetics of Heterogeneous Catalytic Reactions, , Princeton University Press, New Jersey
dc.descriptionMary, S., Kappenstein, C., Balcon, S., Rossignol, S., Gengembre, E., (1999) Appl. Catal. A, 182, p. 317
dc.languageen
dc.publisher
dc.relationApplied Surface Science
dc.rightsfechado
dc.sourceScopus
dc.titleEvolution Of Morphologic Properties On The Preparation Of Ir/al 2o3 Catalysts With High Metallic Contents
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución